There are no BFT Fans Anymore...

About Secure Eventual Consistency

Ali Shoker
@ashokerCS

HASLab, INESC TEC & Minho University, Portugal

o.Jg INESCTE ﬁr
- @)@ HasLab

SOFTWARE LABORATORY

Universidade do Minho

As Secure As Possible Eventual Consistency
EuroSys PAPOC’ |7

There are no BFT Fans Anymore...

Geniuses are bad examples!

ACM Turing Award, 2013

[J The Byzantine Generals Problem [Lamport, 1982]

[J Time, clocks, and the ordering of events in a distributed system [Lamport, |978]
[0 The Part-Time Parliament (Paxos) [Lamport, 1998]

0 LaTeX:A Document Preparation System [Lamport, |986]

Acknowledgments

Joint work with Houssam Yactine and Carlos Baquero

Follow our new edge Computing project: @LightKoneH2020

What is the talk about!?

(] Brief background on BFT & EC

[J What can go wrong in EC with Byzantines?
(] A tradeoff design between BFT & EC

(J Ramp up and feedback

And throughout the talk: Highlights on what impedes BFT adoption

Once upon a time in the 19% c.

Physician: sorry, he is gone!
Relatives: why!
Physician: it was just natural!

Argument no longer accepted in the 2| c.

Back to computers systems..

The system is down!

System is unreachable at the moment!
We are sorry about that..
There was a leakage in the system!
That’s embarrassing..

An unexpected failure caused..
Due to a memory failure,...

Arguments no longer accepted in the 215 c.

Highlight #1

Byzantine faults exist, but practitioners should be more educated about them.

Byzantine Fault Tolerance (BFT)

The strongest fault model ever existed

®© Byzantine players behave arbitrarily [Lamport, 82]
» induce errors, bugs, empty a registry, delete memory...
» behave maliciously or collude

» or even behave correctly!

10

Byzantine Fault Tolerance (BFT)

RQ WQ
Approach — that we care about here: ‘ g ‘ ‘

RQ NWQ > |

® State-machine replication + majority consensus
© Non Byzantine intersection of Write and Read quorums
® At least 3f+1 nodes are needed to tolerate f assumed Byzantine ones.

® Practical BFT: PBFT [Castro, 00].

11

Byzantine Fault Tolerance (BFT)

Challenges (well, few of them):
®© Impossible to distinguish a Byzantine node from a slow node
® Independence of failures: nodes must be diverse — though deterministic

® Impossible to distinguish a well-behaving Byzantine from a correct node

12

Highlight #2

BFT may be costly — additional servers, hardware diversity, N-version programming, etc.

13

Eventual Consistency (and derivatives)

TR

RBcst

Clients

i

RBcst RBcst

Serve: a replica serves clients’s requests without sync — stale reads are okay
Propagate: replicas eventually propagate updates through Reliable Broadcast (RBcst)

Reconcile: fix potential issues later (e.g., manually, using CRDTs, etc.)

14

Eventual Consistency with Byzantines

Clients Clients

Clients

11— i

bd

RBcst RBcst RBcst

A Byzantine replica can execute requests arbitrarily

Client-side: may receive wrong values

Service-side: eventual divergence is guaranteed — local sequential execution
will differ across replicas

15

What can go wrong: an example on Counters

decs S1=3
: >\ S,=8
1ncCsa
... IS
Time

16

Why not just use (P)BFT?

PBFT embraces Strong Consistency

...and you know the story!

17

Highlight #3

Bad timing: AP (of CAP) makes more money...

18

Our approach — not really!

Easy, make PBFT eventually consistent

: L ‘) Aot Adlel . .
guest ' say sE€nEate " maybe ' cETntel, B b
(Celle | Vevidown | de 1dg g requesy ' Tt o Sery

Vamb€r

:«'tclslf{& ' (.\Jéfk

e eas——

~l[€~"'&' epict——

ServE
erver

f}ff- PR

).ﬂ

L)

19

va'ui qll‘ ! Se'\d a'[

' possble | messaaed

Our approach — not really!

Easy, make PBFT eventually consistent

GENEate
vad Can
Vambe,s

20

28y ; f(\ﬂ'*
S .
' ‘!‘]_~"F{‘

1 - |
; u(‘.\"l‘lL be

' QJQ(K

5(\"1(‘ q“ ! Smd a",
' possble | messaaed
1 MR S3aaE ! Aqain

— e ey IS ——— —_
/ - e R RN, 7
™ — N v | K
AN A N TP
v iy, W ~ o
A . A , ” A
/ \ - \\- A’.
7 /W‘ N v \‘}-' e b ! .' A
/ /. ¢ Moang WNTL A iz
'." : ‘ x -_.'...u_ ~. h _._‘:. : ,‘,';;“ " S— ‘i '_- =
Py 4 ! S \ A N ~\ o P A
A Rt TN A T e
! \ Ok X R o S e
! ¢/ IR RN L AN /; A
. Y 3 N %
{7 1 3 A AR B R4 O . - ; 2
/ E LRk ANV . y
/ /' v p \;~ '..! o o he g ; #
——t— e "_"_;_i - Sl
77 N A =
r { v g Ly \‘:‘ ‘\ N o &
/ i AR e
" VRN 1
! N N b
! ¥ i \9 Ot i o -
P N) LR . !
e DULNIES N, S S— — - T
. «a’
R

. ; \' N | -

iy N [7
| A'p"z 3 ey 5
P e ———— L

Our approach — not really!

Clig

Server
Q

The Saddest Moment

JAMES MICKENS

James Mickens is a researcher
in the Dislributed Systems
group at Microsoit’s Redmond
8 lab. His current reseach
focuses on Web epplications,
with an emphasic on the
decign of lavaSesipt framewarks that alaw
developers to diagnose and fix bugs in
widely deployed Web applicaticns. James
aso works on fast, scalable storage systems
for datacenters. James received his PhD

in computer science from the University

of Michigan, and a bachelor's degree in
computer scence from Georgia Tech.

mickens@microsoft com

Eeprinted from ;login: logout, May 2013

enever | go toa cor.ference and I discover that there will be a
presentation about Byzantine fault tolerance, I always feel an
immediate, unshakable sense of sadness, kind of like when you

realize that bad things can happen tc gcod people, or that Keanu Reeves
will almast certainly make more money than you aver arbhitrary time seales.
Watching a presentation on Byzantine fault tolerance is similar to watch-
ing a foreign film from a depressing nation that used to be contrclled by the
Soviets—the only difference is that computers and networks are constan:ly
failing instead of young Kapruskin being unable to reunite with the girl he
fell in love with while he was working in a coal mire beneath an orghanage
that was atop a prison that was inside the abstrzct concept of Worlc War I1.
“How can you make a reliable computer service?” the presenter will ask in an
innocent vo:ce before continuing, “It may be difficult if you can’t trust any-
thing anc the entire concept of happiness is alie designed by unseen over-
lords cf endless deceptive power.” The presenter never explicitly says that
last part, but everybody understands what'’s happenirg. Making distriouted
systems reliah e is inherently impossible; we =ling to Byzantine fault tnler-
ance like Ckarlton Heston elings to his guns, hoping that a series of complex

“y

Don’t believe me? Others tried that.

2014 IEEE International Conference on Services Computing

Byzantine Fault Tolerance for Services with
Commutative Operations

Hua Chai and Wenbing Zhao
Department of Electrical and Computer Engineering
Cleveland State University, 2121 Euclid Ave, Cleveland, OH 44115
wenbing@ieee.org

22

Don’t believe me? Others tried that.

2014 IEEE International Conference on Services Computing

Byzantine Fault Tolerance for Services with
Commutative Operations

are apparently commutative). In addition to the ”add” and “re-
maove” operations, the shopping cart service allows a client to
query the content of a shopping cart via a read-only operation.

= The optimization mechanisms outlined in Section V-C are not
yet implemented due to their complexity.

23

Highlight #4

BFT is complex — but maybe not that much.

24

Our proposal: (P)BFT + Eventual Consistency

Clients

Our proposal: (P)BFT + Eventual Consistency

Clients

=

Consistent
offset

BFT runs
on a consistent offset,
off the critical path

20

Our proposal: (P)BFT + Eventual Consistency

CI|ent CI| n C| n CI| n
™~ \ / /
An accountable model B, B,

[JA client issues requests to one replica 0 0

[JReplicas immediately reply with last certificate

(certificate = BFT proof-of-correctness generated by the BFT cluster in the
background

[JA client rolls-back (or not)

27

Our proposal: (P)BFT + Eventual Consistency

Client

i
[+

~— X 7 /
A modular design \\« ,//
5 =

(O Use BFT off-the-shelf

[J Easy to test, and maintain o N &,

[Safe integration

(JSpectrum of BFT vs EC options — depending on the number of non-
certified operations a client tolerates

Proxy:

28

Where our approach excels!?

[J You care about “consistency” in Eventual Consistency

[J You care about integrity/security but cannot give up availability
[J You care about your legacy system, keep it running

[J You care about customers, let them opt the level of BFT guarantees

29

Tradeoffs

[J Clients need to tolerate some faulty history and rollback
[J The BFT assumptions we've seen early are also assumed
(] Clients are not allowed to talk to multiple replicas at once

30

Highlight #5

BFT limitations: impossible to distinguish a well-behaving Byzantine node from a
correct node, e.g., Byzantine client.

31

Takeaways

EC community meets the BFT community

(] Stay highly available and optionally more Byzantine tolerant
[J Focus on EC and let BFT experts do the hard work
[J Never compromise your running system with BFT complex artefacts

32

Ramp up: why BFT is not widely adopted..

Highlight #1 Byzantine faults exist, but practitioners should be more educated about
them.

Highlight #2 BFT may be costly — additional servers, hardware diversity, N-version
programming, etc.

Highlight #3 Bad timing: AP (of CAP) makes more money...
Highlight #4 BFT are complex — but maybe not that much.

Highlight #5 BFT limitations: impossible to distinguish a well-behaving Byzantine node
from a correct node, e.g., Byzantine client.

33

