
There are no BFT Fans Anymore... 
About Secure Eventual Consistency

Ali Shoker
@ashokerCS

HASLab, INESC TEC & Minho University, Portugal



As Secure As Possible Eventual Consistency
EuroSys PAPOC’17



There are no BFT Fans Anymore... 



Geniuses are bad examples!

 The Byzantine Generals Problem [Lamport, 1982]
 Time, clocks, and the ordering of events in a distributed system [Lamport, 1978]
 The Part-Time Parliament (Paxos) [Lamport, 1998]
 LaTeX: A Document Preparation System [Lamport, 1986]
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What is the talk about?

 Brief background on BFT & EC

 What can go wrong in EC with Byzantines?

 A tradeoff design between BFT & EC

 Ramp up and feedback 

And throughout the talk: Highlights on what impedes BFT adoption
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Once upon a time in the 19th c.

Physician: sorry, he is gone!
Relatives: why? 
Physician: it was just natural!
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Argument no longer accepted in the 21st c.



Back to computers systems..
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Arguments no longer accepted in the 21st c.

The system is down!
System is unreachable at the moment!

We are sorry about that..
There was a leakage in the system!

That’s embarrassing..
An unexpected failure caused..
Due to a memory failure,…



Highlight #1

Byzantine faults exist, but practitioners should be more educated about them.
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Byzantine Fault Tolerance (BFT)

The strongest fault model ever existed

๏ Byzantine players behave arbitrarily [Lamport, 82]

‣ induce errors, bugs, empty a registry, delete memory… 

‣ behave maliciously or collude

‣ or even behave correctly!
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Strongest fault model

 Approach — that we care about here: 

๏ State-machine replication + majority consensus

๏ Non Byzantine intersection of  Write and Read quorums

๏ At least 3f+1 nodes are needed to tolerate f assumed Byzantine ones.

๏ Practical BFT: PBFT [Castro, 00].

Byzantine Fault Tolerance (BFT)
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Byzantine Fault Tolerance (BFT)

 Strongest fault model

 Approach — that we care about here: 

 Challenges (well, few of them):

๏ Impossible to distinguish a Byzantine node from a slow node

๏ Independence of failures: nodes must be diverse — though deterministic

๏ Impossible to distinguish a well-behaving Byzantine from a correct node
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Highlight #2

BFT may be costly — additional servers, hardware diversity, N-version programming, etc.
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Eventual Consistency (and derivatives)
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S1 S2 S3 S4

Clients Clients Clients Clients

RBcst RBcst RBcst

 Serve:  a replica serves clients’s requests without sync — stale reads are okay

 Propagate: replicas eventually propagate updates through Reliable Broadcast (RBcst) 

 Reconcile: fix potential issues later (e.g., manually, using CRDTs, etc.)



Client-side: may receive wrong values

Service-side: eventual divergence is guaranteed — local sequential execution 
will differ across replicas

Eventual Consistency with Byzantines
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S1 S2 S3 S4

Clients Clients Clients Clients

RBcst RBcst RBcst

 A Byzantine replica can execute requests arbitrarily



What can go wrong:  an example on Counters
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S1=3 incA S1=4 decB S1=3

S2=3 decB S2=7 incA S2=8

Replica A

Replica B

Time

incA

decB



Why not just use (P)BFT?

 PBFT embraces Strong Consistency

                                                   …and you know the story!
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Highlight #3

Bad timing:  AP (of CAP) makes more money…
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Our approach — not really!
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Easy, make PBFT eventually consistent



Our approach — not really!

Easy, make PBFT eventually consistent
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Our approach — not really!

Easy, transform PBFT to support EC

21



Don’t believe me? Others tried that.
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Don’t believe me? Others tried that.
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Highlight #4

BFT is complex — but maybe not that much.
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Our proposal: (P)BFT + Eventual Consistency
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BFT Cluster
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Our proposal: (P)BFT + Eventual Consistency
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BFT runs  
on a consistent offset, 

off the critical pathBFT Cluster

S1 S2 S3 S4

Clients Clients Clients Clients
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B4

B1 B2

B3

Log1
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Our proposal: (P)BFT + Eventual Consistency

A client issues requests to one replica
Replicas immediately reply with last certificate
certificate = BFT proof-of-correctness generated by the BFT cluster in the 

background
A client rolls-back (or not)
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BFT Cluster

S1 S2 S3 S4

Client Client Client Client

Proxy4Proxy3Proxy2Proxy1

B4

B1 B2

B3An accountable model



Our proposal: (P)BFT + Eventual Consistency

Use BFT off-the-shelf
Easy to test, and maintain 
Safe integration
Spectrum of BFT vs EC options — depending on the number of non-

certified operations a client tolerates
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BFT Cluster

S1 S2 S3 S4

Client Client Client Client

Proxy4Proxy3Proxy2Proxy1

B4

B1 B2

B3

A modular design



Where our approach excels?

 You care about “consistency” in Eventual Consistency 
 You care about integrity/security but cannot give up availability
 You care about your legacy system, keep it running
 You care about customers, let them opt the level of BFT guarantees 
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Tradeoffs

 Clients need to tolerate some faulty history and rollback
 The BFT assumptions we’ve seen early are also assumed
 Clients are not allowed to talk to multiple replicas at once
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Highlight #5

BFT limitations: impossible to distinguish a well-behaving Byzantine node from a 
correct node, e.g., Byzantine client.
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Takeaways

 Stay highly available and optionally more Byzantine tolerant
 Focus on EC and let BFT experts do the hard work
 Never compromise your running system with BFT complex artefacts
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EC community meets the BFT community



Ramp up: why BFT is not widely adopted..

Highlight #1 Byzantine faults exist, but practitioners should be more educated about 
them.

Highlight #2 BFT may be costly — additional servers, hardware diversity, N-version 
programming, etc.

Highlight #3 Bad timing: AP (of CAP) makes more money…

Highlight #4 BFT are complex — but maybe not that much.

Highlight #5 BFT limitations: impossible to distinguish a well-behaving Byzantine node 
from a correct node, e.g., Byzantine client.
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