
There are no BFT Fans Anymore...
About Secure Eventual Consistency

Ali Shoker
@ashokerCS

HASLab, INESC TEC & Minho University, Portugal

As Secure As Possible Eventual Consistency
EuroSys PAPOC’17

There are no BFT Fans Anymore...

Geniuses are bad examples!

 The Byzantine Generals Problem [Lamport, 1982]
 Time, clocks, and the ordering of events in a distributed system [Lamport, 1978]
 The Part-Time Parliament (Paxos) [Lamport, 1998]
 LaTeX: A Document Preparation System [Lamport, 1986]

4

ACM Turing Award, 2013

Acknowledgments

 Joint work with Houssam Yactine and Carlos Baquero

 Follow our new edge Computing project: @LightKoneH2020

5

What is the talk about?

 Brief background on BFT & EC

 What can go wrong in EC with Byzantines?

 A tradeoff design between BFT & EC

 Ramp up and feedback

And throughout the talk: Highlights on what impedes BFT adoption

6

Once upon a time in the 19th c.

Physician: sorry, he is gone!
Relatives: why?
Physician: it was just natural!

7

Argument no longer accepted in the 21st c.

Back to computers systems..

8

Arguments no longer accepted in the 21st c.

The system is down!
System is unreachable at the moment!

We are sorry about that..
There was a leakage in the system!

That’s embarrassing..
An unexpected failure caused..
Due to a memory failure,…

Highlight #1

Byzantine faults exist, but practitioners should be more educated about them.

9

Byzantine Fault Tolerance (BFT)

The strongest fault model ever existed

๏ Byzantine players behave arbitrarily [Lamport, 82]

‣ induce errors, bugs, empty a registry, delete memory…

‣ behave maliciously or collude

‣ or even behave correctly!

10

Strongest fault model

 Approach — that we care about here:

๏ State-machine replication + majority consensus

๏ Non Byzantine intersection of Write and Read quorums

๏ At least 3f+1 nodes are needed to tolerate f assumed Byzantine ones.

๏ Practical BFT: PBFT [Castro, 00].

Byzantine Fault Tolerance (BFT)

11

RQ WQ

RQ ∩ WQ > 1

Byzantine Fault Tolerance (BFT)

 Strongest fault model

 Approach — that we care about here:

 Challenges (well, few of them):

๏ Impossible to distinguish a Byzantine node from a slow node

๏ Independence of failures: nodes must be diverse — though deterministic

๏ Impossible to distinguish a well-behaving Byzantine from a correct node

12

Highlight #2

BFT may be costly — additional servers, hardware diversity, N-version programming, etc.

13

Eventual Consistency (and derivatives)

14

S1 S2 S3 S4

Clients Clients Clients Clients

RBcst RBcst RBcst

 Serve: a replica serves clients’s requests without sync — stale reads are okay

 Propagate: replicas eventually propagate updates through Reliable Broadcast (RBcst)

 Reconcile: fix potential issues later (e.g., manually, using CRDTs, etc.)

Client-side: may receive wrong values

Service-side: eventual divergence is guaranteed — local sequential execution
will differ across replicas

Eventual Consistency with Byzantines

15

S1 S2 S3 S4

Clients Clients Clients Clients

RBcst RBcst RBcst

 A Byzantine replica can execute requests arbitrarily

What can go wrong: an example on Counters

16

S1=3 incA S1=4 decB S1=3

S2=3 decB S2=7 incA S2=8

Replica A

Replica B

Time

incA

decB

Why not just use (P)BFT?

 PBFT embraces Strong Consistency

 …and you know the story!

17

Highlight #3

Bad timing: AP (of CAP) makes more money…

18

Our approach — not really!

19

Easy, make PBFT eventually consistent

Our approach — not really!

Easy, make PBFT eventually consistent

20

Our approach — not really!

Easy, transform PBFT to support EC

21

Don’t believe me? Others tried that.

22

Don’t believe me? Others tried that.

23

Highlight #4

BFT is complex — but maybe not that much.

24

Our proposal: (P)BFT + Eventual Consistency

25

BFT Cluster

S1 S2 S3 S4

Clients Clients Clients Clients

RBcst RBcst

Proxy4Proxy3Proxy2Proxy1

B4

B1 B2

B3

Log1

RBcst

Our proposal: (P)BFT + Eventual Consistency

26

BFT runs
on a consistent offset,

off the critical pathBFT Cluster

S1 S2 S3 S4

Clients Clients Clients Clients

Proxy4Proxy3Proxy2Proxy1

B4

B1 B2

B3

Log1

Consistent
offset

RBcst RBcst RBcst

Our proposal: (P)BFT + Eventual Consistency

A client issues requests to one replica
Replicas immediately reply with last certificate
certificate = BFT proof-of-correctness generated by the BFT cluster in the

background
A client rolls-back (or not)

27

BFT Cluster

S1 S2 S3 S4

Client Client Client Client

Proxy4Proxy3Proxy2Proxy1

B4

B1 B2

B3An accountable model

Our proposal: (P)BFT + Eventual Consistency

Use BFT off-the-shelf
Easy to test, and maintain
Safe integration
Spectrum of BFT vs EC options — depending on the number of non-

certified operations a client tolerates

28

BFT Cluster

S1 S2 S3 S4

Client Client Client Client

Proxy4Proxy3Proxy2Proxy1

B4

B1 B2

B3

A modular design

Where our approach excels?

 You care about “consistency” in Eventual Consistency
 You care about integrity/security but cannot give up availability
 You care about your legacy system, keep it running
 You care about customers, let them opt the level of BFT guarantees

29

Tradeoffs

 Clients need to tolerate some faulty history and rollback
 The BFT assumptions we’ve seen early are also assumed
 Clients are not allowed to talk to multiple replicas at once

30

Highlight #5

BFT limitations: impossible to distinguish a well-behaving Byzantine node from a
correct node, e.g., Byzantine client.

31

Takeaways

 Stay highly available and optionally more Byzantine tolerant
 Focus on EC and let BFT experts do the hard work
 Never compromise your running system with BFT complex artefacts

32

EC community meets the BFT community

Ramp up: why BFT is not widely adopted..

Highlight #1 Byzantine faults exist, but practitioners should be more educated about
them.

Highlight #2 BFT may be costly — additional servers, hardware diversity, N-version
programming, etc.

Highlight #3 Bad timing: AP (of CAP) makes more money…

Highlight #4 BFT are complex — but maybe not that much.

Highlight #5 BFT limitations: impossible to distinguish a well-behaving Byzantine node
from a correct node, e.g., Byzantine client.

33

