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Abstract

Cloud Computing has become a prominent and successful computing
model. However, the immense volumes of data generated through social
networks, data analytics, and the Internet of Things impose new chal-
lenges that surpass the capability of Cloud Computing infrastructures.
For example, the data generated in an IoT scenario can overwhelm a
data center if one is not careful to do some computation locally. Addi-
tionally, this can also lead to unavailability scenarios when devices lack
the connectivity to reach the data center. The Edge (a.k.a. Fog) Com-
puting model extends the Cloud Computing model to exploit resources
at the edge of the network (closer to the clients), avoiding the necessity
of executing applications fully on the cloud. This approach yields addi-
tional benefits for applications including privacy, availability, and local
decision making. In this work we present the foundations of a new Hori-
zon 2020 research project called LightKone that extends Edge Computing
for general-purpose computation, making it more scalable and flexible,
and providing a set of mechanisms to simplify development and deploy-
ment of applications. The LightKone approach is based on the use of
synchronisation-free shared mutable data combined with robust and effi-
cient hybrid gossip communication primitives. In this way, we intend to
build full systems that are completely synchronisation-free.

From Cloud to Fog/Edge Computing

With the notable growth of the Internet and web services, data centers
with high computational and storage capacities became crucial and the
primary architecture employed by technology giants and large-scale busi-
nesses to support their applications and operation. However, the com-
plexity and cost associated with the maintenance and scalability of these
architectures lead to the emergence of the Cloud Computing model that
provides “everywhere, anytime” properties via scalable data centers built
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using (mainly cheap) commodity hardware and whose infrastructures can
be shared by a multitude of tenants [1].

The cloud computing model gained a lot of attention due to its pay-
per-use business model which allows medium and small sized companies
to grow and shrink their information processing infrastructure on a daily
basis. This feature is usually referred to as cloud elasticity. It is essentially
achieved through dynamic resource management: exposing the physical
resources (i.e., equipment) as virtual resources and making them available
to the users at fine or coarse granularity to fit their particular (dynamic)
needs (e.g., a user can transparently allocate a number of CPUs or storage
disks that can belong to one or several physical computers); since this
mechanism is seamless to the user, the latter can demand or release virtual
resources without having to take into consideration the physical resources
that are hidden below.

The Limits of the Cloud Computing Model

Unfortunately, the cloud computing model is becoming increasing chal-
lenged to collectively guarantee the “everywhere, anytime” properties due
to the exponential growth of data generation and processing requirements
of many emergent applications, such as applications in the realm of the
Internet of Things (IoT), that produce large amounts of data that have
to be processed within useful, and sometimes small, time windows.

According to IBM, 90% of the data on Earth has been created in the
last two years [2]; the IDC analysis [3] estimates that IoT workloads will
increase nearly 750% between 2014 and 2019, generated by tens of billions
of smart devices. Since the major part of this data is often stored and
processed at the data centers (as described in Fig. 1), many concerns arise
about how these extreme volumes of data should be transported, stored,
processed, maintained, and made available.

Resorting to cloud infrastructures to support such applications is infea-
sible not only due to their unprecedented scale and requirements, but also
due to the need to transfer large amounts of data to the cloud, which can
lead to unbearable delays in the processing of data. Additionally, many of
the components associated with IoT applications often experience weak
or intermittent connectivity, which can lead to availability issues if the
logic and storage of these applications is fully delegated to a remote cloud
infrastructure.

The Time for Edge Computing

The Edge Computing model (depicted in Figure 2) was proposed to com-
plement the current cloud computing model by moving some storage and
computations to the “edge of the network” [4]. The essence of this pro-
posal is that the majority (more than 90%) of “raw data” generated by
IoT and stored at the cloud data center is arguably useless; in fact, it
was observed that aggregates of data are often sufficient for most appli-
cations [5].

In the edge computing model, edge nodes with sufficient aggregate
storage and computational capacities are placed closer to the end user,
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Figure 1: The cloud computing model.

Figure 2: The edge computing model.

i.e., at the logical extreme of the network where the application is de-
ployed. These nodes are then leveraged to offload a significant fraction of
storage and computing requirements of applications, whereas complemen-
tary processing and storage can be performed at the cloud data center if
necessary.

This model brings significant benefits. From a data-centric viewpoint,
these benefits can be summarized as follows:

• reducing the amount of data handled (stored, processed, and main-
tained) at the data centers, which also leads to lower costs in using
cloud infrastructures;

• reducing the network load by decreasing the data to transport by
processing and aggregating it at the edge;

• improving the user experience as data processing is being performed
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closer to the user, which enables lower response time especially when
the data center is not reachable (this however has a potential to
lower the quality of responses provided by users due to computations
progressing with only partial view of the data);

• improving data security/privacy since the data that might be con-
sidered sensitive for the user is never exposed to the cloud infras-
tructure, a target which is easily accessible for attackers and that
has increased gain;

• additionally, by storing data locally, such data is easily available
to enable local decision taking, which can improve availability and
overall performance/quality of applications.

Challenges at the Edge

Edge networks are usually composed of large sets of heterogeneous, loosely
coupled computing nodes. Because of this property, edge applications will
be frequently exposed to several aspects that make their design and execu-
tion highly challenging, namely high membership dynamics (nodes joining,
leaving, and becoming unavailable), intermittent connectivity (frequent
partitions), and weak communication ordering (message delivery may not
respect the order in which messages were originally sent).

In fact, many distributed applications currently are designed to op-
erate under strong consistency models, using solutions such as replicated
state machines. This happens due to the complexity in designing appli-
cations under weaker consistency models. Unfortunately, the use of such
techniques is incompatible with the properties enunciated above. There-
fore, there is a clear need to rethink how to develop distributed applica-
tions to run on edge computing environments.

No current solutions exist that enable the easy development and de-
ployment of applications under the edge computing paradigm. There is
a lack of support for the execution of general computations in such a
challenging environment. In particular, the current state of the art for
performing computations on edge networks consists of gossip and peer-to-
peer algorithms, which are able to do aggregate computations and provide
content distribution of immutable data across the edge. Unfortunately,
these techniques are still restricted in terms of scale and they are not eas-
ily extended to support general computations on the edge i.e., to perform
any form of distributed computation over shared and mutable state.

Directions for Edge Computing

In this section we cover multiple relevant aspects of current technologies
and solutions that can benefit the emergence of edge computing as a
standard paradigm to develop efficient, robust, and useful applications.
Furthermore, we identify aspects on current solutions that limit current
solutions and that have to be addressed.
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Hardware

Although edge computing technology is relatively new, it is attracting
both the academic and industrial communities. A solution that has been
suggested by leading companies such as Cisco, IBM, and Dell is to develop
special hardware like servers, routers, and boxes, that can serve as edge
computing devices. Dedicated edge computing devices are already in the
market, e.g., Cisco UCS E Series Servers, Cisco IOx software, and Dell
Edge Gateway 5000 Series, in addition to proxies, mobiles, motes, routers,
etc., that can also serve as edge devices as well. Although the above edge
devices enable many edge application scenarios, they are often used as
stand-alone nodes that are directly connected to the node running the
application and/or to the cloud data center.

However, this direction is far from exploiting the entire power of an
edge network, in particular it does not enable collaborative storage and
computations directly among edge devices. To achieve the full poten-
tial of the edge computing paradigm, an active effort must be conducted
to develop hardware that enable and simplify the management of direct
interactions among devices executing edge-computing applications.

Additionally, using mobiles as edge devices is currently limited to me-
dia streaming and immutable data sharing1, and therefore lacks the ability
to support general-purpose edge computing techniques that can be con-
ducted in existing edge hardware, as presented above. This happens due
to limited connectivity and capabilities on mobile devices. This implies
that an effort has to be made to develop mechanisms that can enable the
participation of highly heterogeneous devices in generic edge computations,
in particular by exploiting mechanisms that are synchronization-free as to
ensure availability even in scenarios where connectivity is restricted.

Cloud Computing Virtualization

Cloud computing can be seen from two different perspectives: (1) a tech-
nical perspective that deals with virtualization technology and resource
management to form a large common infrastructural backbone, and (2) a
business perspective that exploits a large number of aggregated resources
and support infrastructure to provide services, hence the terms XaaS (Ev-
erything as a Service) [1].

From the technical perspective, virtualization cannot take advantage
of the application semantics to improve performance. The reason is that
virtualization aims to form a single backbone layer on top of which ser-
vices can be built thus removing the burden of dealing with the inherent
complexities of the underlying environment. Although this is useful to
many applications, it can be limiting to others due to the latency issues
that can arise from abstracting the low level aspects of a system design,
deployment, and operation.

In fact, the need to explicitly deal with low-level aspects, such as high
communication latency or network partitioning, is not exclusive to edge

1You may want to have a look at recent research projects like FP7 Mobile Cloud
Networking (http://www.mobile-cloud-networking.eu/site/), FP7 Mobile Cloud (http:
//www.fp7-mobilecloud.eu/), and CMU Hyrax (http://hyrax.dcc.fc.up.pt/).
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computing. It also exists in classical cloud computing. For instance,
driven by the CAP theorem [6], it has been shown that many applications
favor trading (strong) consistency for availability to improve user expe-
rience as those from the companies SoundCloud, Bet 365, Riot Games,
Rovio, and Trifork which favored technology that avoids strong synchro-
nization between components of a large-scale distributed system, either
in terms of replication protocols employed, or through the use of special-
ized datatypes that can be operated in a safe way independently by each
system component [7]2.

This recent trend in the design of applications and storage solutions
in the context of large-scale cloud computing-based systems denotes a
clear need to invest in developing mechanisms to support the operation of
edge-computing applications that require strong synchronization among its
components. Meaning that in an environment that is loosely coupled and
highly asynchronous, one should favor synchronization-free solutions.

From a business-centric perspective, the cloud computing paradigm
has found significant success from its ability to be easily exploited in the
context of XaaS. A robust and efficient platform for performing edge-
computation and the mechanisms required to support the operation of
such an architecture have therefore to be further advanced as to enable
their exploitation and availability to a broad class of consumers as an
“Edge Computing as a Service (ECaaS)”. In our view this is an essential
step to achieve the full potential of this computational model.

Synchronization-Free Programming

We present briefly the main ideas of synchronization-free programming
and explain how they fit edge computing [7, 8]. Traditional approaches
to distributed system design do not generalize to edge networks because
they depend on strong synchronization between multiple parties, such
as the ones provided by uniform consensus. Unfortunately, such strong
synchronization primitives are impossible to achieve in a scalable fashion
on edge networks. An alternative to the use of such primitives is to rely
on synchronization-free programming.

Consider a distributed data structure replicated over n nodes to im-
prove robustness in the case of node failures. Each node has a copy of
the data structures current value. When an operation is invoked at one
node, a new value is computed and all nodes must be updated to the new
value. This must be done consistently in the face of concurrent operations,
node failures, and network disruptions ranging from variable latency, to
message drop, or partitions.

Leveraging strong synchronization primitives, one would resort to a
solution based on an uniform consensus algorithm such as Multi-Paxos
[9] or Raft [10]. Many industrial systems use this solution, e.g, Google’s
Chubby Lock Service uses Multi-Paxos. In this solution, the consensus
algorithm is executed across all n nodes for each operation, which besides
being expensive and non-scalable, also does not provide availability in face

2These novel approaches have been explored in the context of a previous European research
project called SyncFree (https://syncfree.lip6.fr).
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of significant node failure or disruptions on the network.
The alternative proposed in the context of synchronization-free pro-

gramming is based on the observation that, in most cases consensus is
not strictly necessary for maintaining replicated data structures. Repli-
cated data structures can be achieved using a Conflict-free Replicated
Data Type (CRDT) [7]. A CRDT satisfies the mathematical property of
Strong Eventual Consistency (SEC), which guarantees that replicas are
consistent as soon as they observe and execute the same set of operations.

This enables the programming of distributed applications that do not
have to be concerned explicitly about synchronization among components
that might be loosely coupled. Instead, it becomes enough to ensure that
eventually different components of the system are able to communicate
with each other and exchange synchronization information, which is much
weaker than uniform consensus.

This approach works well and is being used in several industrial sys-
tems, such as applications from the companies SoundCloud, Bet 365, Riot
Games, Rovio, and Trifork. And its success points toward the need to
further exploit synchronization-free programming models to develop robust
and available applications under the edge-computing model.

Hybrid Gossip

Gossip is an effective approach for implementing aggregate computations
on highly dynamic networks. In its most simple materialization, in a gos-
sip algorithm, each component of a system will periodically interact with
another randomly selected component (e.g, components in this context
might represent different nodes of a distributed systems), where both can
exchange information about their local state (and potentially merge it).
Applications of gossip also include managing the membership of large-
scale system as well as overlay (i.e, logical) network topologies [11], in a
way that is both robust and scalable.

In fact, gossip-based approaches have been shown to be highly resilient
to network faults, due to the inherent redundancy that its part of the
design of gossip protocols. Unfortunately, this redundancy also leads to
significant efficiency penalties.

Hybrid gossip solutions [11] were proposed to address this challenge by
relying on the feedback produced by previous gossip interactions among
nodes, such that an effective and non-redundant structure of communica-
tion can naturally emerge among nodes. This communication structure
depends on the computation being performed by nodes, and it enables
nodes to fundamentally communicate and coordinate through this struc-
ture, lowering the redundant communication among them.

The communication paths remaining among nodes are used to convey
minimal control information, which enables the system to detect (and
recover) from failures that might affect the emergent structure, as well as
enabling nodes to fall back to a pure gossip strategy when a large number
of failures (node crashes or network failures) happen.

The hybrid gossip approach has been introduced in [11]. Plumtree in
particular, is used in industry: the Basho Riak database uses it to manage
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the underlying structure of its ring topology which is used to map data
object keys into nodes (through consistent-hashing).

As discussed above, hybrid gossip solutions are efficient in stable sce-
narios and sacrifice efficiency for robustness in face of highly dynamic en-
vironments. Edge-computing environments, due to their scale and loosely
coupled nature, are typically highly dynamic. This leads to the need for
further exploring hybrid gossip protocols that can be tailored into support-
ing large-scale applications running in between the edge and the central
infrastructure offered by data centers, in a robust and efficient manner.

Lasp and Selective Hearing

Lasp is a synchronization-free programming model that uses CRDTs as
its primary data abstraction [12]. Lasp allows programmers to build ap-
plications through composition of CRDTs, while ensuring that the result
of the composition also observes the same strong convergence properties
(SEC) as the individual CRDTs that make up the composition. Lasp
achieves this by ensuring that the monotonic state of each object main-
tains a homomorphism with the program state during its execution [12].

Lasp provides many benefits for developers of distributed applications;
no longer do developers need to reason about the ordering of events or
concurrent operations that need to be protected by locks or mutexes,
as computations written in Lasp are guaranteed to have deterministic
execution with minimal amounts of coordination. However, Lasp does
this at a penalty to the application developer; specifically, the reduction
of coordination comes at the cost of increased state. Lasp takes this view
because supporting large amounts of clients that will operate under the
conditions required by edge networks results in traditional solutions that
rely heavily on event ordering, such as Paxos or Raft, intractable.

However, for the Lasp programming model to be successful, it must
be paired with a scalable runtime system that allows for efficient, fault-
tolerant event dissemination of replicated state in large-scale networks.
The Selective Hearing model, which pairs the Hybrid Gossip approach
and the Lasp mechanism for composition of CRDTs, provides just that:
Lasp’s tolerance to message reordering and duplication can exploit highly-
efficient protocols for state dissemination that guarantee weak event or-
dering.

For supporting the operation of applications in environments with no
guarantees on event ordering one has to further exploit models such as
Lasp and Selective Hearing, which enable to define applications that do not
make any assumptions on ordering of events, without putting a significant
burden on the reasoning of developers.

LightKone: An Upcoming H2020 Project
on Edge Computing

LightKone is a new European Horizon 2020 project that will develop novel
solutions and technology for defining and executing general-purpose com-

8



putations directly on an edge network without the need for a central
coordinator.

The project plans to achieve this by combining the two previously
discussed approaches: synchronization-free programming, where theoret-
ically sound approaches are used to ensure data convergence under repli-
cation with concurrent writers; and hybrid gossip, techniques for support-
ing direct collaboration and communication efficiency through the use of
emergent structures that self-adapt to dynamic environments.

Although both of these techniques are already used separately in indus-
try, combining them addresses a specific tension: hybrid gossip protocols
support efficient and resilient communication in an edge network, however
provide weak ordering guarantees; whereas synchronization-free program-
ming supports distributed programming with shared state without the
non-determinism that typically arises from protocols with weak ordering.

Therefore, we expect this combination to lead to an useful substrate for
large-scale edge programming that is tolerant to intermittent connectivity
(frequent partitions), high membership dynamics (nodes joining, leaving,
and failing), and weak ordering of communication channels.

How Does it Work?

We briefly explain how general-purpose edge computation will be achieved
by combining synchronization-free programming and hybrid gossip.

Both the data and the computation are spread across all nodes. Each
node contains just a small part of the global state and that state is allowed
to exist on multiple nodes for resilience (replication).

Each node is responsible for a small fraction of computation over the
state that is locally accessible, and multicasts the result to nodes whose
computations require that result. When a node receives results from other
nodes, it merges the results with its own data. The merge operation does
a monotonic update of the local data. All nodes repeat continuously the
three operations receive data, compute, and send results.

Due to the formal properties of synchronization-free programming,
namely monotonicity and strong eventual consistency, this allows to ad-
vance the global computation in a coherent fashion without resorting to
other communication or synchronization mechanisms. Additionally this
approach is resilient even in face of node or communication failure. The
Selective Hearing prototype that is based on this idea shows the soundness
of this approach.

Light Edge and Heavy Edge

The widely different applications that we are targeting impose very dif-
ferent requirements on the underlying infrastructure. For example, IoT
applications must carefully manage energy consumption of sensor devices
and keep them in low-power mode as much as possible. A edge-centric
data center application, on the other hand, must carefully manage com-
munication between thin clients and data centers, so that clients are not
hindered by latency and staleness.
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Figure 3: Weight of an edge network: light edge networks have many small
nodes only, heavy edge networks also have some large nodes.

Yet there is much in common between these extremes, since all run in
decentralized fashion across many nodes. For example, both IoT appli-
cations and edge-centric data center applications can allow small devices
to communicate with each other, exchanging information and performing
(partial) computations locally.

To distinguish the two qualitatively different kinds of edge networks,
we introduce the concept of the weight of an edge network. We define
a light edge network as one that contains only small nodes with limited
resources (no data centers or points of presence).

We define a heavy edge network as one that contains many small nodes,
as before, but also a small number of large nodes (data centers or points
of presence). Figure 3 illustrates the two cases. The qualitative problems
facing these two cases are quite different: light edge networks must do fine-
grained resource management, and heavy edge networks must balance the
work between the large nodes and the small nodes.

Concluding Remarks

The ever-growing amounts of data generated over the Internet are rais-
ing real challenges for the Cloud Computing model that often delegates
most of its computation and storage towards the cloud data center. The
Edge/Fog Computing model can be seen as a distributed extension of the
Cloud model through breaking down the core of the cloud into a net-
work of smaller clouds (i.e., the Fog) often located at the proximity of
the user, thus bringing several performance benefits and novel classes of
applications.

In this article, we survey the state-of-the-art of Edge Computing and
recent advances in computation and communication showing how it falls
short of enabling a wide range of applications in which mutable states can
be used, without compromising the application semantics or performance.
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Our prospective project (i.e., LightKone) will exploit recent advances in
synchronization-free computations (that support shared mutable states
with high availability and eventual consistency under hostile communica-
tion mediums) and an underlying hybrid gossip dissemination layer (that
is based on tree-based gossip which combines lightweight and robust gos-
sip paradigms, subject to the network reliability conditions). The project
will also address the related challenges of security, scalability, availabil-
ity, and sustainability, forming a comprehensive theoretical and practical
solution.

One of the goals of the project is making computations at the edge
reality. Consequently, the involvement of the industrial partners of the
project will be key to analyze, suggest, and develop new paradigms, ap-
plications, and APIs that can be exploited at the edge. We are optimistic
towards making this technology a standard that advances hand in hand
with the current solutions, therefore exploiting the best of both worlds:
immutable and shared mutable state computations at the edge.
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