
Project no. 732505
Project acronym: LightKone
Project title: Lightweight computation for networks at the edge

D6.1: New concepts for heavy edge computing

Deliverable no.: D6.1
Title: New concepts for heavy edge computing
Due date of deliverable: December 31, 2017
Actual submission date: February 7, 2018

Lead contributor: UNIKL
Revision: 0.1
Dissemination level: PU

Start date of project: January 1, 2017
Duration: 36 months

This project has received funding from the H2020 Programme of the European Union

LightKone Deliverable D6.1(v0.1), December 31, 2017

Revision Information:

Date Ver Change Responsible
31/01/2018 0.1 1st version UNIKL

Contributors:

Contributor Institution
Annette Bieniusa TUKL
Deepthi Akkoorath TUKL
Peter Zeller TUKL
Nuno Preguiça NOVA
Gonçalo Cabrita NOVA
Gonçalo Tomás NOVA
João Leitão NOVA
Bernardo Ferreira NOVA
Dimitrios Vasilas Scality
Roger Pueyo Centelles UPC
Ilyas Toumlilt UPMC/INRIA
Paolo Viotti UPMC/INRIA

LightKone D6.1(v0.1), December 31, 2017, Page 2

CONTENTS

Contents

1 Executive summary 1

2 Results 3
2.1 Making AntidoteDB ready for edge computing 3

(a) Overview of AntidoteDB . 3
(b) Client-side caching . 5
(c) Non-uniform Replication . 6
(d) Access control for weakly-consistent data stores 8
(e) Antidote Query Language . 9

2.2 Correctness and verification of heavy edge applications 19
(a) Repliss . 19
(b) Correct Eventual Consistency tool (CEC) 22

2.3 Further work on data storages for heavy-edge systems 25
(a) Blotter: Geo-replication with strong consistency 25
(b) Tradeoffs in reducing read latencies 27
(c) Transparent speculation in partially replicated transactional stores 31
(d) Multimodal Indexable Encryption for Mobile Cloud-based Ap-

plications . 32
(e) Consistency Upgrades for Online Services 34

2.4 Relation to use cases . 40
(a) Monitoring Guifi.net community network 40
(b) Building a weakly-consistent datastore index 42
(c) A file system on AntidoteDB . 43

3 Papers and publications 46

4 Software 47

A Publications 54

LightKone D6.1(v0.1), December 31, 2017, Page 3

CONTENTS

1 Executive summary
Despite their distributed nature, many edge applications rely on a cloud database for
persistent storage, analysis, and re-distribution of data. WP6 investigates protocols and
schemes for integrating cloud databases into edge computing (heavy edge). To pre-
serve availability of the system under network partitions, edge nodes typically commu-
nicate asynchronously with the cloud database. Further, cloud databases should be geo-
replicated to reduce latency. This can lead to (temporary) divergence of data replicated
at different nodes: at the edge and within the database.

AntidoteDB is a geo-replicated cloud database that provides transactional causal con-
sistency for conflict-free replicated data types. These semantics are specifically targeting
edge computing systems where availability under network partitions must be guaranteed.
Originated from the SyncFree project, AntidoteDB forms the basis for the heavy-edge
use cases within the Lightkone project.

The major contributions of this deliverable are extensions and techniques that have
been developed to make AntidoteDB employable in the heavy-edge use cases:

• We are working on a causally consistent client-side cache for AntidoteDB clients.

• We provide data types that allow non-uniform replication. This reduces the
amount of data stored at individual replicas for replicated data types such as the
top-K CRDT while all queries can be answered with the locally available data.

• To protect data from unauthorized access, we have developed an access control
layer for geo-replicated causally consistent systems and provide an implementa-
tion for AntidoteDB.

• The Antidote Query Language (AQL) is a SQL-like interface with support for
integrity constraints such as referential integrity.

The use cases from WP2 that we want to implement in the context of WP6 span a
wide selection of scenarios:

• Project partner UPC investigates into a monitoring system for the GUIFI.net
community network.

• Project partner Scality has started to implement a weakly-consistent datastore
index that scales to large amounts of data.

• In collaboration with the French ANR project RainbowFS, project partner INRIA
/ UPMC develops a CRDT-based filesystem, named AntidoteFS.

The development of applications on weakly-consistent data stores is error-prone.
Concurrent non-synchronized access to different replicas can yield to unexpected results,
even for experienced programmers. We are therefore developing tools that verify the
correctness of such applications, using different proof techniques:

• Repliss offers a domain-specific language for modeling applications and specify-
ing invariants; it can be either used as (interactive) verification tool or automated
testing tool.

LightKone D6.1(v0.1), December 31, 2017, Page 1

CONTENTS

• The CEC tool builds on the CISE logic [30]. It verifies that the model of the
application’s operations is safe, communtative, and stable with respect to specified
invariants.

Besides AntidoteDB and transactional causal consistency, this deliverables further
comprises work on other heavy-edge systems.

• Blotter is a protocol for transactional data stores with non-monotonic snapshot
isolation semantics that allows to maintain stronger application invariants.

• We provide a detailed analysis of the performance for reads-dominated work-
loads in geo-replicated datastores and the evaluate the tradeoff between data fresh-
ness and consistency.

• In our work on speculative execution, we show how systems with partial replica-
tion can substantially increase throughput and reduce latency by postponing vali-
dation of executed operations.

• MIE is a Multimodal Indexable Encryption framework that supports mobile ap-
plications dynamically storing, sharing, and searching multimodal data (i.e. data
with multiple media formats simultaneously) in public cloud infrastructures while
preserving privacy.

• Finally, we developed a middleware that extends the consistency semantics of a
cloud system to the clients by providing fine-granular use of session guarantees.

Collaboration with other WPs Most protocols and extensions that we present in this
deliverable have been implemented in the AntidoteDB framework, but they are also appli-
cable in other heavy-edge systems. While D6.1. focuses on the challenges of integrating
these techniques in AntidoteDB, deliverable D3.1. presents them in a broader context.

The work on verification tools spans both WP4 and WP6. Both tools, Repliss and
CEC, target a transactional shared-object programming model that has been formalized
in WP4.

The use cases that have been selected for WP6 have been proposed in WP2. Fol-
lowing the security analysis of D2.1., the work on multimodal indexable encryption for
mobile cloud-based apps addresses the data protection requirements identified in D2.1.
Further, our presentation comprises an access control model with semantics targeting
weakly-consistent datastores.

As discussions within the consortium has shown, heavy- and light-edge systems are
covering a continuous spectrum of distributed system design. Many insights and tech-
niques that have been developed apply therefore for both WP5 and WP6. This includes in
particular the work on partial replication and related topics such as uniform replication.

LightKone D6.1(v0.1), December 31, 2017, Page 2

CONTENTS

2 Results

2.1 Making AntidoteDB ready for edge computing

(a) Overview of AntidoteDB

AntidoteDB is a highly available geo-replicated key-value database. AntidoteDB pro-
vides features that help programmers to write correct applications while having the same
performance and horizontal scalability as AP/NoSQL databases.

The code for AntidoteDB is available at http://github.com/SyncFree/antidote, and
the documentation is available at http://antidotedb.org.

Features

• CRDTs: Conflict-free replicated data types [60] are high-level data types designed
to provide sensible and deterministic semantics despite concurrent updates and par-
tial failures. AntidoteDB supports various CRDTs such as counters, sets, maps and
flags as listed in https://github.com/SyncFree/antidote crdt.

• Horizontal scalability: Data is partitioned across several servers within a data cen-
ter. AntidoteDB can execute updates and read in parallel across these partitions,
thus achieving better throughput than a single machine system.

• Geo-Replication: AntidoteDB replicates data across several data centers around
the globe. The reads and updates are served from the local replica, without con-
tacting remote data centers. This asynchronous communication model provides
continuous functioning even when there are failures or network partitions.

• Highly available transactions: AntidoteDB provides causal consistency and atomic
multi-object operations. The transactions provide a stronger programming model
by which developers can program their applications without worrying about the
inconsistencies due to concurrent updates.

Architecture A data center of AntidoteDB may have more than one server to support
a large database that cannot be stored in a single machine. A data center stores a full
replica of the database. Each server manages multiple virtual partitions that stores a
non-overlapping set of objects determined using consistent hashing. An AntidoteDB de-
ployment consists of more than one data center located across the globe. Each data center
may have a different number of servers but uses the same consistent hashing mechanism
to determine the partitions.

AntidoteDB consists of the following modules which implement different function-
alities.

• Persistent storage: Each partition is responsible for storing the objects owned by
it persistently. The persistent storage is currently implemented as a transaction log
which stores all the operations to provide fast and fault-tolerant write access and
efficient management of multi-versioning for CRDT objects.

LightKone D6.1(v0.1), December 31, 2017, Page 3

http://github.com/SyncFree/antidote
http://antidotedb.org
https://github.com/SyncFree/antidote_crdt

CONTENTS

• In-memory cache: Each partition maintains an in-memory cache that stores snap-
shots of the objects. The read operations read from this in-memory cache instead
of the persistent log. Thus the in-memory cache is also responsible for generating
the requested version of the objects by applying the operations.

• Transaction manager: AntidoteDB allows atomic transactions across partitions.
The transaction manager coordinates reads and updates to multiple objects stored
in different partitions. The default protocol supported by AntidoteDB is Cure [3],
which provides transactional causal+ consistency.

• Inter-dc replication: The updates are asynchronously replicated to other data cen-
ters by the inter-dc replication module using a publish-subscribe system imple-
mented using ZeroMQ. Each partition publishes its updates, and the remote par-
titions can subscribe to them. These updates are then delivered to the transaction
module, which then decides how and when to make the updates visible according
to the consistency semantics provided.

• External API: AntidoteDB exposes a protocol buffer interface. This interface al-
lows clients to communicate with AntidoteDB in a language-agnostic way.

Results AntidoteDB serves as a reference platform for implementing and testing new
protocols presented in this deliverable.

To support more applications, we implemented a java client library1 that commu-
nicates with AntidoteDB over the protocol buffer interface. The library is used by the
project partners to implement their research prototypes and to implement the applica-
tions that demonstrate the applicability of weakly consistent scalable databases.

To be able to evaluate the performance of AntidoteDB, we developed a benchmarking
tool called FMKe2. This tool was modeled after Flles Medicinkort (FMK), a subsystem
of the Danish National Joint Medicine Card responsible for managing patient information
at a national level, and making it available to several entities such as doctors, hospitals
and pharmacies. In this domain there is a need to keep records for pharmacies, treatment
facilities, patients, prescriptions, patient treatments and medical events (such as taking
medicine or prognosis updates). The benchmark includes a set of high-level application
operations, with each of those generating a sequence of read and write operations over
entities stored in the database. The set of treatment facilities, pharmacies, patients and
medical staff are assumed to exist in the database for the duration of the benchmark, so
these records are populated in the data store prior to the execution of the benchmark.

There are four core entities in FMKe - patients, doctors (medical staff), pharmacies
and hospitals (treatment facilities). Other records appear as relations between these en-
tities, but current benchmark workloads are heavily focused on prescriptions and entities
associated with the management of prescriptions.

As depicted in Figure 2.1, FMKe is deployed as an application server, communicating
with the database system through a driver. A second component is used to generate a
workload of client requests over the application servers according to a specification (i.e,
a set of parameters). This architecture allows us to easily write drivers for other storage

1https://github.com/SyncFree/antidote-java-client
2The paper can be found in the Appendix of this deliverable.

LightKone D6.1(v0.1), December 31, 2017, Page 4

https://github.com/SyncFree/antidote-java-client

CONTENTS

Figure 2.1: FMKe Architecture

systems and compare the performance obtained those storage systems in the context of
the benchmark.

FMKe currently supports Redis, AntidoteDB, and RiakKV. We plan to extend the
supported databases to include Cassandra soon. There is ongoing work to perform a
comparative study of all supported data stores with different setup configurations (varying
number of data centers, using in-memory storage, etc), as well as a documentation effort
to further present FMKe as a standard benchmark for key-value stores for the community
at large.

(b) Client-side caching

Cloud-scale services improve availability and latency by geo-replicating data in several
data center across the world. Nevertheless, the closest data center is often still too far
away for an optimal user experience. To remain available at all times, client-side applica-
tions need to cache data at client machines. This approach is used in many recent cloud
services, where developers implement caching and buffering at application level, but it
doesn’t ensure system-wide consistency guarantees.

The client cache is mostly a small and size-bounded memory space, thus, it cannot
contain a total replica of the data store. A common approach to solve this problem is to
use partial replication [11], so each client cache contains only part of the database and its
metadata.

The SwiftCloud approach Introduced by Zawirski et. al [68], the goal of the Swift-
Cloud approach is to extend geo-replication all the way to the client machine, pushing
consistency, convergence and availability guarantees to the client cache, at a reasonable
cost.

Our client cache is implemented on top of AntidoteDB (section (a)), and uses an LRU
policy. Each client is connected to an AntidoteDB data center, and is interested, at any
point of time, in a subset of the objects in the database, called its interest set. The client
cache only needs to store the objects of its interest set. Initially, the client cache is a
projection of data center’s state, that is causally consistent. Any update, either generated
by the client or delivered by the data center, maintains causal consistency. This approach

LightKone D6.1(v0.1), December 31, 2017, Page 5

CONTENTS

ensures that a client replica commits updates without waiting, and transfers them to its
data center asynchronously.

The system guarantees the invariant that every node (DC or cache) maintains a causally-
consistent set of object versions. Data is fully-replicated in a DC, and to be able to serve
any version requested by the client-side cache, multiple versions of an object will be
stored in the DC. On each DC, data is sharded to multiple server non-overlapping par-
titions, a vector clock VP is maintained by each partition P. Any entry VPi[j] counts the
number of transactions committed by Pj that Pi has processed. Each DC has a vector
clock VDC that maintains globally stable consistent snapshot commit time, that is the
snapshot time available on all its partitions. On the client cache side, a vector clock VC
stores the most recent version of cached objects, one entry for each DC, and an additional
entry for local transactions.

Each transaction in the client cache generates an identifier composed of a monoton-
ically increasing timestamp and a unique cache identifier. A vector clock is also allo-
cated to summarize the causal dependencies of the transaction. API functions read
and multi_read returns a version of the requested object (or multiple objects for
multi_read) that guarantees causal consistency. If the requested object is missing
in the cache, it is fetched from the DC, and if its version is not valid, the read fails.
Update operations effects are logged when an operation is executed on a previously read
object, then cache’s entry in VC is updated with transaction’s timestamp. The updates are
made immediately visible to the client issuing them.

Each committed update at the client log is transmitted to its current DC. The client
waits for an acknowledgment that contains the timestamp assigned by the DC to its up-
date. In case of transfer failure (communication timeout or DC missing some causal
dependencies) the client is switched to another DC. In the other way, client can subscribe
to objects updates in the DC. In this case, the DC will maintain a FIFO best-effort channel
to the client, sending a causal stream of update notifications. Those notifications contain
the log updates to the objects of the client’s interest set, which are then applied to its local
state.

K-Stability When a DC fails, client is switched to another one. The state of the new
DC may miss some client’s causal dependencies. SwiftCloud’s approach is to make the
client cache co-responsible for the recovery of missing session causal dependencies at
the new DC. We define a transaction to be K-stable at a DC, if it has been applied in at
least K DCs, where K is configurable. More precisely, a client can observe the union of:
(i) its own updates, and (ii) the K-stable updates made by other clients. The client can
move to an other DC, as long as this new DC ensures that the client continues to observe
a monotonically-growing set of K-stable updates.

(c) Non-uniform Replication

Replication is a key technique in the design of efficient and reliable distributed systems.
However, as the information stored in a data store grows it becomes difficult or even
impossible to store all the information at every replica. A common approach to deal with
this is to rely on partial replication [20, 56, 63], where each replica maintains only a part
of the total system information. As a consequence, a remote replica might need to be
contacted for computing the reply to some given query, which leads to high latency costs

LightKone D6.1(v0.1), December 31, 2017, Page 6

CONTENTS

especially in geo-replicated settings.
Non-uniform replication [16]3 is a novel approach to replication, where each replica

only needs to store part of the information (like in partial replication), but where all
replicas store enough information to answer every query (like in full replication). The
key insight is that for some data objects, not all data is necessary for providing the result
of read operations. For example, an object that keeps the top-K elements only needs to
maintain those top-K elements in every replica. However, the remaining elements are
necessary if a remove operation is available, as one of the elements not in the top needs
to be promoted when a top element is removed.

A top-K object could be used for maintaining the leaderboard in an online game. In
such a system, while the information for each user could be kept only in the edge (the
devices of the user itself) and in the data center closest to the user, it is important to
keep a replica of the leaderboard in every data center in order to provide low latency
and availability. For this case it would also be interesting to maintain a replica of the
leaderboard at the edge, allowing read and write operations to be issued to it instantly.

Advantages of non-uniform replication The main advantage of non-uniform repli-
cation is that each replica does not require all of the data to correctly respond to read
operations. This allows replicas of non-uniform objects to be much smaller – reducing
the storage costs for these objects. As a direct consequence, replicas of these objects do
not need to propagate every update to other replicas in order to synchronize – reducing
the bandwidth costs for these objects.

Applicability of the model Non-uniform replication can be applied to all objects that
store some amount of data but that for responding to read operations require only a subset
of the data to be available locally. In a nutshell, the subset of the data that is required to
answer read operations must be propagated to all replicas while the remaining data can
either not be propagated anywhere (which raises issues regarding fault-tolerance) or it
can be propagated to a small number of replicas (to tolerate some number of faults).

While non-uniform replication cannot be useful for all data types, the number of use
cases appears to be large enough for it to be an interesting model in practice.

Design for integration in AntidoteDB We now briefly explain how we have intro-
duced support for non-uniform replication in AntidoteDB.

We began by implementing some interesting data types that could benefit from this
replication model [29], among them the Top-K with removals. These new data types
expose the same API as the data types previously supported by AntidoteDB, with some
extensions in order to properly benefit from non-uniform replication inside AntidoteDB.

To support these new data types we modified AntidoteDB’s IntraDC replication layer
in two ways: (i) we added a mechanism for buffering operations for a short period of
time, and (ii) changed the broadcasting mechanism to allow sending certain updates only
to specific replicas. The first relates to the optimization of the propagation of update
operations which target non-uniform CRDTs. The intuition is that the more we wait
before propagating operations the more efficient the propagation will be as less operations
will need to be propagated everywhere. For example, certain elements may be added to

3The paper can be found in the Appendix.

LightKone D6.1(v0.1), December 31, 2017, Page 7

CONTENTS

a Top that later turn out to not be needed everywhere due to other elements being added.
The second change relates to the optimization of the delivery of updates, as some updates
are not required to be present at every replica our change makes sure that they are only
delivered to a subset of replicas to ensure their durability.

Besides these changes in the replication layer, some changes to AntidoteDB’s materi-
alizer were also required. Specifically, we modified the materializer to ignore no-ops and
to support the changes in the status of the update operations of non-uniform CRDTs. To
expand a bit on the second change, it is required to ensure that update operations that pre-
viously were not required to be present at every replica (e.g. an element that was added to
the Top, but was not part of the Top-K elements) can be propagated to all replicas when
needed.

(d) Access control for weakly-consistent data stores

Information systems often store sensitive information of customers, clients and users in
cloud storage facilities. To protect this information from unauthorized access, the organi-
zation running such an information system needs to define a security policy to determine
who may access and/or modify which subset of the data. Security policy are typically
implemented in an access control system. In general, a security policy is not immutable:
new information is constantly entered into the system, and organizational changes cause
time and again adaptations of the security policy. For example, in social networks, users
want to be able to restrict access to their personal information when interpersonal rela-
tions change. After such a policy change, the new policy must be employed in the access
control system for all operations happening afterwards. Since restarting the system for
each policy change is not feasible due to availability requirements, the access control
system must support dynamic changes of the policy at runtime.

For strongly consistent systems, dynamically adaptable access control is well under-
stood. Several access control models have been proposed [25, 32, 33, 54, 55] which im-
plicitly rely on some total ordering of the operations. In weakly-consistent systems[19,
21, 45, 51], updates are accepted at any replica and propagated asynchronously to the
other replicas. These synchronization messages coming from different replicas can ar-
rive in an arbitrary order on a node, showing often even reordering of messages from the
same replica during transmission. Though there is usually a well-defined order in which
the operations happen on a replica, there is no global total order of all operations issued.

As a solution for this problem, we developed a model for access control in weakly-
consistent cloud-storage systems. In this setting, all replicas are trusted and operate in
a secure environment, but exchange updates only asynchronously. As part of this work,
we defined an abstract model for weakly consistent cloud-storage systems with access
control systems [67]4.

Semantics of an access control system for weak consistency An access control sys-
tem is considered correct if it enforces a security policy on all replicas. Though, for
weakly consistent systems, we cannot refer to the security policy due to potential (tem-
porary) divergence of replicas. Depending on the order in which events become visible,
we might obtain different policies for a data access on different replicas. The goal is to

4The paper can be found in the Appendix of this deliverable.

LightKone D6.1(v0.1), December 31, 2017, Page 8

CONTENTS

disambiguate the policy for events while preserving the protective properties of a policy
modification.

For the specification of our access control semantics, we follow therefore two prin-
ciples: (1) All policy changes need to be applied on all replicas before applying any
subsequent data events and (2) conflicts of concurrent policy modifications are handled
conservatively.

As we haven shown in [67], it is possible to provide these semantics by tracking of
the causality regarding policy modifications and data operations, and implementing the
security policies as a Policy CRDT. This CRDT offers two operations: The setRight
operation allows to overwrite rights assignments that happened before. Specifically, it
means that all rights assignments which are causally related are removed while con-
current assignments are retained before adding the new assignment to the policy. This
possibly results in multiple concurrent right assignments. The getOp operation yields
then the current right assignment by taking the most restrictive of all concurrent rights
assignments.

Implementation As proof of concept, we implemented an access control layer for An-
tidoteDB, named ACGreGate, with these weakly-consistent semantics as an extension
to this AntidoteDB Java client library. Further, we designed and implemented a Policy
CRDT and included it in AntidoteDB’s CRDT library.

To implement the online check, ACGreGate intercepts all operations sent by the client
library to the AntidoteDB database and processes them by an access control monitor (Fig-
ure 2.2). This monitor takes an implementation of a decision procedure to make the ac-
cess control decisions. The decision procedure is application-dependent and corresponds
to the security policy of the application. In principle, the decision procedure takes the
operation, the currently acting user, and the permissions of this user and decides whether
the operation is allowed to be executed or not.

Evaluation ACGreGate has been evaluated in the context of a case study with a student
management system. ACGreGate’s performance is an order of magnitude better than a
centralized access control server when simulating a roundtrip time of 10 ms between
access control server and datastore replica. This shows that geo-replicated databases can
substantially benefit from a replicated weakly-consistent access control layer.

(e) Antidote Query Language

Antidote Query Language (AQL) is a module providing a SQL-like interface for Antidot-
eDB. The goal of AQL is to allow application developers to continue using the familiar
SQL interface for interacting with AntidoteDB. Other NoSQL databases offer SQL-like
interface, such as CQL for Cassandra. AQL shares some properties with these systems.
Notably, it does not provide strong consistency, allowing uncoordinated concurrent up-
dates to occur. AQL builds on the semantics on the CRDTs available in AntidoteDB to
handle these concurrent updates as detailed later, guaranteeing that all replicas converge
to the same value.

Unlike other SQL-like interfaces, AQL design focuses on exploring AntidoteDB
unique features for providing a semantics closer to SQL strong consistency while run-
ning under weak consistency. In this context, AQL is the first to provide support for

LightKone D6.1(v0.1), December 31, 2017, Page 9

CONTENTS

Figure 2.2: Architecture of ACGreGate.

LightKone D6.1(v0.1), December 31, 2017, Page 10

CONTENTS

maintaining SQL integrity constraints, including primary key, check and referential in-
tegrity constraints.

We now describe the current version of AQL, which is still under development.

Tables and DDL statements AQL supports the relational data model, where data is
stored in tables with a given schema. A table is created by executing a create table
statement with the following syntax:

CREATE [@AW | @RW] TABLE table_name (
column1 datatype [constraint],
column2 datatype [constraint],
...
column_n datatype [constraint]

)

A table has an associated concurrency semantics: add-wins (@AW) or remove-wins
(@RW) (by default, add-wins). When the add-wins semantics is selected, if a delete for
a given primary key executes concurrently with an insert or update of a row with that
primary key, the delete has no effect and the row will be kept in the table. When the
remove-wins semantics is selected, the delete takes precedence over concurrent inserts or
updates.

The create table statement also specifies the columns of the table, including
their name and type. Currently, AQL supports the following data types with its associated
concurrency semantics:

VARCHAR A VARCHAR field stores a string with any dimension. On concurrent updates,
a last-writer-wins policy is adopted, by preserving the last value written (more
precisely, the value of the write operation with the largest timestamp). This is
achieved by mapping a VARCHAR column to a last-writer-wins register;

BOOLEAN A BOOLEAN field stores a boolean value. On concurrent updates, a enable-
wins policy is adopted, by setting the value to true if at least one of the concurrent
updates set the field to true. This is achieved by mapping a BOOLEAN column to a
enable-wins flag;

INTEGER A INTEGER field stores an integer. A column with this data type can be up-
dated by either assigning a new value or by incrementing/decrementing a constant
value. For a given set of operations, the value of the field is mv+ sumi− sumd ,
with: mv, the largest value assigned to the field such that there is no other assign
operation that happens after that assignment (or 0 if no assign has been executed);
sumi, the sum of all increment operations that have not happened before the assign
of mv; deci, the sum of all decrement operations that have not happened before
the assign of mv. This is achieved by mapping a INTEGER column to an Integer
CRDT;

COUNTER INT A COUNT INT field stores an integer with an associated check con-
straint. A column with this data type can be updated by incrementing/decrementing
a constant value. An update operation may fail locally if its execution can violate
the defined check constraint. This happens when the local replica has not enough

LightKone D6.1(v0.1), December 31, 2017, Page 11

CONTENTS

reservations to guarantee that the global invariant is maintained. The value of the
field is init+ sumi− sumd , with: init, the initial value of the field (equal to the limit
in the check constraint, by default); sumi, the sum of all increment operations that
have not happened before the assign of mv; deci, the sum of all decrement opera-
tions that have not happened before the assign of mv. This is achieved by mapping
a COUNTER INT column to a Bounded Counter CRDT.

Like SQL and unlike other SQL modules for NoSQL databases, AQL allows a col-
umn to have an associated constraint and enforces these constraints despite concurrent
updates. Constraints can be specified using the following syntax:

constraint ::= PRIMARY KEY |
CHECK [GEQ|GREATER|SEQ|SMALLER] val |
FOREIGN KEY [@FR|@IR] REFERENCES table(column)

A primary key constraint guarantees that a row can be uniquely referenced by the
value of the primary key column. There can be only a primary key column and every
table must have a primary key. The uniqueness of the primary key is enforced by merg-
ing concurrent inserts with the same primary key. Columns are merged by using the
concurrency semantics defined for the column.

A check constraint guarantees that the value of a column satisfies the specified con-
dition for all rows in the table. The check constraint is enforced in a decentralized way.
When executing an operation that updates a column with an associated check constraint,
the operation may succeed or fail locally. If it succeeds, it is guaranteed that the global
constraint will not be violated, despite any concurrent operations.

To achieve this, AQL relies on the Bounded Counter CRDT [9] implemented in Anti-
doteDB. The idea is to spilt among the replicas the difference between the current value
of the column and its bound. For example, for a check constraint specifying that some
column must be great or equal to zero, if the current value of the column for some row
is N and there are M replicas, one could assign to each replica the right to decrement by
M/N. The global constraint will not be violated if a replica accepts locally only oper-
ations that cumulatively decrement the value of the value by at most M/N. When not
enough rights exist locally to guarantee the execution of the operation, the operation can
fail locally (or the replica may try to get more rights from other replicas).

A foreign key allows a row in a table to refer to a row in another table. A database
enforce referential integrity or foreign key constraints if it guarantees that no reference is
broken, i.e., that all refereed rows exist. When locally executing a statement that deletes
a row referred by some other row, AQL adopts the SQL cascading behavior, where the
row that references the deleted row is also deleted.

AQL enforces referential integrity constraints in a decentralized way, without restrict-
ing the execution of concurrent operations, by adopting either a force revive (@FR) or
a ignore revive (@IR) semantics. A referential integrity constraint can be violated if
concurrently an operation inserts a row that refers to another row and another operation
deletes this latter row. This leads to a broken reference. When adopting the force revive
semantics, AQL revives the deleted row, thus healing the broken reference. When adopt-
ing the ignore revive semantics, AQL deletes the inserted row with the broken references.
We details the AQL semantics when enforcing referential integrity later.

LightKone D6.1(v0.1), December 31, 2017, Page 12

CONTENTS

DML statements AQL supports the common SQL statements for inserting, updating
and deleting rows in a table with the following syntax:

INSERT INTO table_name [(column1, column2, ... column_n)]
VALUES (value1, value2, ... value_n)

UPDATE table_name
SET column1 expression1 AND ... AND column_n expression_n
WHERE condition

DELETE FROM table_name WHERE conditions

An INSERT statement inserts a new row in the database. If the value of a column is
not specified, a default value is assigned (AQL currently does not support NULL values).
As mentioned before, if two inserts with the same primary key are executed concurrently,
the value of each column is the result of the merge between the inserted values.

An UPDATE statement updates all rows of table name, known in the local replica
when the UPDATE is submitted, that conform the specified WHERE condition (if no
WHERE condition is specified, it updates all rows known locally). An UPDATE statement
has no effect over rows concurrently inserted or updated in a way that would conform the
WHERE condition. The effects of concurrent UPDATE statements that modify the same
rows are merged according to the column data type.

An DELETE statement deletes all rows of table name, known in the local replica
when the DELETE is submitted, that conform the specified WHERE condition (if no
WHERE condition is specified, it deletes all rows known locally). An DELETE statement
has no effect over rows concurrently inserted or updated in a way that would conform the
WHERE condition.

As mentioned before, the state of the database in the presence of concurrent insert/up-
date and delete statements that affect the same rows is controlled by the semantics defined
for the table: add-wins or remove-wins.

AQL supports querying the database through the select statement with the following
syntax:

SELECT projections FROM table_name [WHERE conditions]

The result of a select is computed locally in a replica. Thus, it will not include the
effects of operations executed in different replicas and that have not been propagated to
the replica where the select is being executed. When compared with SQL, AQL supports
only a subset of the syntax (and functionality). Notably, AQL currently does not support
joins.

AQL currently has no support for transactions – each operation executes as a single
AntidoteDB transaction.

Semantics of referential integrity We now detail the semantics implemented in AQL
when enforcing referential integrity in the presence of concurrent updates. We start by
considering the simple case, where an insert operation executes concurrently with a sim-
ple delete (i.e., a delete without cascading), leading to a referential integrity violation.
Figure 2.3 exemplifies this case with two tables, Artists and Albums, where Albums
has a foreign key Artist referring to the the Artists table. In the example, starting in a

LightKone D6.1(v0.1), December 31, 2017, Page 13

CONTENTS

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A1 Sam 2006

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A1 Sam 2006

Database Schema
Artists

Name Country

Albums

Title Artist Year

Figure 2.3: Example of integrity constraint violation.

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A1 Sam 2006

Artists

Name Country

Sam EN

Albums

Title Artist Year

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A1 Sam 2006

Database Schema
Artists

Name Country

Albums

Title Artist Year

(a) Force revive semantics.

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A1 Sam 2006

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A1 Sam 2006

Database Schema
Artists

Name Country

Albums

Title Artist Year

(b) Ignore revive semantics.

Figure 2.4: Semantics for solving integrity constraint violation.

database state where only artist Sam exist, concurrently the artist is deleted and an album
of the artist is inserted. When combining the effects of the two operations, we would
have an album referring a deleted artist, leading to a violation of the referential integrity
constraint.

As mentioned before, when adopting the force revive semantics, AQL revives the
deleted row, thus healing the broken reference. When adopting the ignore revive se-
mantics, AQL deletes the inserted row with the broken references. Figure 2.4 shows the
previous example solved using these semantics.

We now consider the referential integrity violation that occurs when an insert executes
concurrently with a delete with cascading behavior. Consider the example of Figure 2.5.
In this example we start with a database state where there is an artist Sam with an album
A0. An insert operation adds album A1 for Sam. Concurrently, a delete operation deletes
artist Sam. The cascading effect leads to the deletion of album A0 (that was the only
known album in the replica where the delete was executed). Combining the effects of the
operations leads to a referential integrity violation with album A1 referring the deleted
artist Sam.

Adopting the ignore revive semantics is straightforward. In such case, the inserted
album A2 must be deleted also (Figure 2.6b). Adopting the force revive semantics should

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

A1 Sam 2006

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

A1 Sam 2006

Database Schema
Artists

Name Country

Albums

Title Artist Year

Figure 2.5: More complex example of integrity constraint violation.

LightKone D6.1(v0.1), December 31, 2017, Page 14

CONTENTS

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

A1 Sam 2006

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

A1 Sam 2006

Database Schema
Artists

Name Country

Albums

Title Artist Year

(a) Force revive semantics.

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

A1 Sam 2006

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

Database State
Artists

Name Country

Sam EN

Albums

Title Artist Year

A0 Sam 2015

A1 Sam 2006

Database Schema
Artists

Name Country

Albums

Title Artist Year

(b) Ignore revive semantics.

Figure 2.6: Semantics for solving integrity constraint violation in the more complex
example.

CHAPTER 5. IMPLEMENTATION

Figure 5.1: Record format in AntidoteDB

With this solution it is possible to perform partial updates to each record (i.e. update

only certain values), while guaranteeing that records are not sharded across multiple

nodes.

Figure 5.2: Mapping from an AQL record to a an AntidoteDB entry.

Figure 5.2 exemplifies how an AQL record is mapped to an AntidoteDB entry. Note

that the CRDT type of each field in the map is omitted for simplicity in this example.

5.3.4 Column Data Types

As described in section 4.2.2, AQL supports 4 column data types: INTEGER, VARCHAR,

COUNTER_INT and BOOLEAN. In our implementation each data type is mapped to a

single CRDT, except for counters, that are dependent on whether they are associated with

of a numeric constraint or not. The main criteria for the proposed mapping is semantics:

AQL data types are mapped to CRDT based on the CRDT operations, such that the

semantics of AQL data types is as close as possible to the SQL data types.

5.3.4.1 INTEGER

Integers are mapped to CRDT Integers[32, 55]. CRDT integers provide two operations:

• set operation, which allows to assign a numeric value to the object. In concurrent

scenarios, the maximum value prevails;

• increment operation, which allows to add/subtract numeric values to the object.

CRDT Integers use a delta to control concurrent increments.

58

Figure 2.7: Mapping between an AQL row to an AntidoteDB key/value pair.

revive artist Sam. An interesting question in this case is what should be the effect on
album A0. Reviving album A0 is not necessary for enforcing referential integrity. How-
ever, as it has been deleted as a side-effect of deleting artist Sam, our decision was to
revive also album A0 – Figure 2.6a exemplifies this semantics. If the album A0 had been
explicitly deleted by a delete statement on table Albums, the album would have not been
revived. The general rule adopted in AQL is the following: when a row r is revived, all
rows that were deleted as a side-effect of deleting r are also revived.

Implementation AQL is implemented as a module that runs in a AntidoteDB deploy-
ment. Table contents are stored in AntidoteDB by storing the contents of each row as a
AntidoteDB map under a key that is created using the table name and the value of the
primary key – Figure 2.7 depicts the approach.

For supporting AQL operations that need to iterate over all rows of a table, AQL
maintains an index of the rows of each table in an AntidoteDB set. To this end, this set is
updated whenever a new row is inserted, by adding the new primary key to the set.

For controlling whether a row is deleted or not, when concurrent operations execute,
the map for each row includes a visibility entry with a multi-value register CRDT. When
executing an insert or update statement, the entry of every row modified is assigned the
value I. When executing a delete statement, the entry of every row modified is assigned
the value D. For a table with the add-wins semantics, a row is considered as deleted if
and only if the only value of the visibility entry is D. For a table with the remove-wins
semantics, a row is considered as deleted if and only if one of the values of the visibility
entry is D. Figure 2.8 shows an example of the evolution of the database when executing
a concurrent update and delete operations.

For controlling whether a row is deleted or not when affected by the rules for enforc-
ing referential integrity, we consider two cases: without cascading and with cascading.

We first consider the case without cascading. In this case, whenever a row that has
a foreign key is inserted or updated, the visibility entry of the row referenced by the

LightKone D6.1(v0.1), December 31, 2017, Page 15

CONTENTS

4.3. INVARIANT PRESERVATION

Operation Token Additional side-e↵ects

INSERT/UPDATE I
For each parent-record p, set p with T.
For each parent-record p, set all child-records of p with TC.
Both operations are transitive.

DELETE D
For each child-record, set all child-records of p with DC.
This operation is transitive.

Table 4.6: Mapping between operations and visibility tokens.

Figure 4.6: A simple example of how visibility tokens are used to set the record’s existence.

4.3.3.3 Visibility Tokens

In order to implement such behaviour, our solution consists in attaching an additional

ghost column (i.e. not visible to the user) that stores the last operation applied to a record

in the form of a token, as described in table 4.6. This implies that each time an operation

is issued upon a record, AQL implicitly updates this extra-column: Table 4.6 shows which

token is assigned to each AQL operation, such that upon converging, records can be set

to the appropriate state. Additionally, this also implies that AQL never deletes records

at AntidoteDB level, as a local delete operation might be conflicting with another remote

operation, leading to a possible scenario where some of the deleted records might need

to be revived (e.g. through the use of force-revive or add-wins).

Figure 4.6 provides a visual description of how visibility tokens are used to define a

record’s existence. In this example, two concurrent operations (UPDATE and DELETE)

are applied to the same record, which in each branch changes the visibility token (in

column ’#st’) to I and D, respectively. Upon convergence, the table rule set to Artists
will dictate which token prevails. If I prevails (through an ADD-WINS table rule), then

Artists(Sam) will be considered visible and will be displayed in future read operations.

However, in case token D prevails (through a REMOVE-WINS table rule) the record will

be considered deleted, thus not being available to the user.

49

Figure 2.8: Example of the evolution of visibility entries in the presence of concurrent
update and delete operations.

Database State
Artists

Name Country #st

Sam EN I

Albums

Title Artist Year #st

A0 Sam 2015 I

Database State
Artists

Name Country #st

Sam EN T

Albums

Title Artist Year #st

A0 Sam 2015 I

A1 Sam 2006 I

Figure 2.9: Example of the evolution of visibility flags when inserting a new row with a
foreign key (without cascading).

foreign key must be set to T. Figure 2.9 shows how the visibility entries are updated
when inserting a new Album for an existent artist.

For supporting cascading, it is not sufficient to change the visibility entries of the rows
known when operations execute – for example, for implementing the semantics of Figure
2.6b, the delete of artist Sam must affect albums A0 and A1, but A1 is not known when
the delete was initially executed. To address this, we record visibility tokens associated
with cascading at the table level.

When deleting a row r1 of table T1, such that there is a row r2 in table T2 with a
foreign key that points to r1, besides setting the visibility entry of r1 to D, AQL records
at the table level of T2 that any record pointing to r1 has visibility token DC. Figure 2.10
exemplifies this case.

When inserting a row r1 in table T1 with a foreign key that points to row r2 of table
T2, besides setting the visibility entry of r1 to I and that of r2 to T, we record at the table
level of T1 that any record pointing to r2 has visibility token TC. Figure 2.11 exemplifies
this case.

The visibility tokens recorded by AQL are used to decide if a given row is visible or
not. To this end, for each table, AQL defines a total order among the visibility tokens
depending on the semantics defined at the table level and in the foreign keys. The seman-
tics defined at the table level defines the relative order of I and D – for add-wins, D <

LightKone D6.1(v0.1), December 31, 2017, Page 16

CONTENTS

Database State
Artists

Name Country #st

Sam EN I

Albums

Title Artist Year #st

A0 Sam 2015 I

Database State
Artists

Name Country #st

Sam EN D

Albums

Title Artist Year #st

A0 Sam 2015 I

Albums

(Sam, DC)

Delete	cascade

Figure 2.10: Example of the evolution of visibility entries when deleting a row (with a
foreign key pointing to it).

Database State
Artists

Name Country #st

Sam EN I

Albums

Title Artist Year #st

A0 Sam 2015 I

Database State
Artists

Name Country #st

Sam EN T

Albums

Title Artist Year #st

A0 Sam 2015 I

A1 Sam 2006 I

Albums

(Sam, TC)

Figure 2.11: Example of the evolution of visibility entries when inserting a new row with
a foreign key.

LightKone D6.1(v0.1), December 31, 2017, Page 17

CONTENTS

Referential Integrity
o Table level rules and foreign-key level

rules
o Mapped into prevalence rules according to

the correspondent tokens

27

D < I

Figure 2.12: Order of visibility tokens for add-wins table semantics.Referential Integrity
o Table level rules and foreign-key level

rules

28

D < I < T

TC <I < D < DC

Figure 2.13: Order of visibility tokens for force-revive foreign key semantics.

I (Figure 2.12) and for remove-wins, I < D. The semantics defined in the foreign key
defines: (i) the relation between TC and DC – for force revive, DC < TC and for ignore
revive, TC < DC; (ii) the relation between T and the table level tokens I and D – for
force revive, T is the top value (Figure 2.13) and for ignore revive, T is the bottom value.

Figure 2.14 presents the eight possible combinations, with two of them being unable
to enforce referential integrity. The creation of a table that would lead to one of these
invalid combination fails in AQL.

Figure 2.15 shows the visibility entries of the database for the example of Figure 2.5.
With an add-wins semantics at the table level and a force revive semantics in the foreign
keys, the token order in Albums is DC < TC < D < I and in Artists is D < I < T.
Given these orders and the visibility tokens, all rows are visible as expected.

Final remarks AQL is the first SQL interface for a NoSQL database that enforces
constraints without limiting the execution of concurrent operations. The current version
of AQL is available in a branch of AntidoteDB. We are currently working on addressing
some limitations of the current implementation (e.g., indices, joins) and improving the
performance of the current prototype.

Referential Integrity

29

Table-level

Dependency-level

Dependency-level
(from child table)

DC < TC < D < I < T

DC < TC < I < D < T

T < TC < D < I < DC T < TC < D < I < DC

T < DC < TC < D < I

T < DC < TC < I < D

TC < D < I < DC < T TC < I < D < DC < T o Break referential integrity

RW | IR

AW | FR

Figure 2.14: Possible orders for visibility tokens.

LightKone D6.1(v0.1), December 31, 2017, Page 18

CONTENTS

Database State
Artists

Name Country #st

Sam EN I

Albums

Title Artist Year #st

A0 Sam 2015 I Database State
Artists

Name Country #st

Sam EN T

Albums

Title Artist Year #st

A0 Sam 2015 I

A1 Sam 2006 I

Database State
Artists

Name Country #st

Sam EN D

Albums

Title Artist Year #st

A0 Sam 2015 I

Database State
Artists

Name Country #st

Sam EN D/T

Albums

Title Artist Year #st

A0 Sam 2015 I

A1 Sam 2006 I
Albums

(Sam, TC)

Albums

(Sam, DC)

Albums

(Sam, DC/TC)

o Artists:	[D	<	I	<	T]
o Albums:	[DC	<	TC	<	I	<	D]

Figure 2.15: Example of Figure 2.6a with visibility entries.

2.2 Correctness and verification of heavy edge applications

(a) Repliss

Repliss is a tool supporting the development of correct applications on top of weakly
consistent databases such as AntidoteDB. Such information systems often use an archi-
tecture with a separate database-access component, which is responsible for persistently
storing data. When using a weakly consistent database, this is the component that has to
handle the difficulties that come with eventual consistency. Even for experts, it is difficult
to understand all possible interactions of possible concurrent operations and be confident
in the correctness of this component.

Repliss offers a domain specific language for building the data-access component and
supports developers in checking its correctness. To check the correctness, developers
write the code of the application in the Repliss language and they write specifications
that the code will be checked against. For checking code against specifications, Repliss
supports two techniques:

1. An automatic testing tool[69]5, which executes the application code with different
API invocations and concurrent schedules and checks the specification dynami-
cally. This tool can find bugs in applications without requiring additional user
inputs besides the code and specification.

2. A verification tool, which can prove that all executions adhere to the specification.
The tool uses a proof technique, which was developed for Repliss, and proven
sound in Isabelle/HOL[48]. The verification tool usually requires additional user
input in the form of auxiliary invariants or use of an interactive theorem prover to
complete the proofs, but compared to the testing tool it gives more insights and
understanding and it can guarantee correctness.

Example Figure 2.16 shows an example program implementing a database of users.
The function registerUser creates a new user account with the given data and returns
the unique identifier of the newly created user. To update the mail address of a user with

5The paper can be found in the Appendix.

LightKone D6.1(v0.1), December 31, 2017, Page 19

CONTENTS

1 def registerUser(name: String, mail: String): UserId {
2 var u: UserId
3 atomic {
4 u = new UserId
5 call user_name_assign(u, name)
6 call user_mail_assign(u, mail)
7 }
8 return u
9 }

10

11 def updateMail(id: UserId, newMail: String) {
12 atomic {
13 if (user_exists(id)) {
14 call user_mail_assign(id, newMail)
15 }}}
16

17 def removeUser(id: UserId) {
18 call user_delete(id)
19 }
20

21 def getUser(id: UserId): getUserResult {
22 atomic {
23 if (user_exists(id)) {
24 return found(user_name_get(id), user_mail_get(id))
25 } else {
26 return notFound()
27 }}}
28

29 crdt user: Map_rw[UserId, {
30 name: Register[String],
31 mail: Register[String]
32 }]

Figure 2.16: Repliss Userbase Example: Procedures

a given identifier, there is a function updateMail. To remove a user from the system,
removeUser can be called. The data of a user can be retrieved via getUser, which
returns a record with the name and the email address of a given user, or not_found when
the user does not exist.

To describe the layout of the persistent data, users can compose CRDT types from the
Repliss CRDT library or specify their own datatypes using first order formulas. Choos-
ing a suitable CRDT semantics is essential for the correctness of the application. The
userbase example only works correctly if mapDelete affects all prior and concurrent
mapWrite operations, so a remove-wins map CRDT can be used. Line 29 in Figure 2.16
shows how a suitable data layout for the userbase example is defined in Repliss.

For this application, we want to verify that calling getUser(u) after removeUser(u)
for a user with unique identifier u returns notFound. We can specify this with the follow-
ing invariant:
invariant (forall r: invocationId, g: invocationId, u: UserId ::

r.info == removeUser(u)
&& g.info == getUser(u)
&& r happened before g
==> g.result == getUser_res(notFound()))

Testing Our userbase example satisfies the above property, but when we introduce a
bug by removing the atomic block in the updateMail procedure of the userbase exam-
ple, our automatic testing tool finds the counter example shown in Figure 2.17. The graph
is automatically generated for the Repliss web interface. The outer boxes in the visual-

LightKone D6.1(v0.1), December 31, 2017, Page 20

CONTENTS

invoc_2
 registerUser(String_2, String_1)

 result: registerUser_res(UserId_002)

tx_2

invoc_23
 removeUser(UserId_002)

 result: -

tx_24

invoc_24
 updateMail(UserId_002, String_2)

 result: -

tx_26

tx_25

invoc_35
 getUser(UserId_002)

 result: getUser_res(found(not initialized, String_2))

tx_37

call_1
user_name_assign(UserId_002, String_2)

call_2
user_mail_assign(UserId_002, String_1)

call_4
user_exists(UserId_002)

result: true

call_3
user_delete(UserId_002)

call_5
user_mail_assign(UserId_002, String_2)

call_6
user_exists(UserId_002)

result: true

call_7
user_name_get(UserId_002)

result: not initialized

call_8
user_mail_get(UserId_002)

result: String_2

Figure 2.17: Repliss counter example with missing transaction.

LightKone D6.1(v0.1), December 31, 2017, Page 21

CONTENTS

izations represent invocations. Each invocation can contain several boxes representing
transactions and each transaction can again contain several calls to the database. The
causal dependencies between database calls are denoted by arrows. As shown in Figure
2.17, the invariant can be violated, when a concurrent mapDelete call becomes visible
before the second database call in updateMail.

Verification To verify that the original program (with the transaction) really maintains
the property for all possible executions, Repliss requires two auxiliary invariants:
invariant forall u: UserId, i: invocationId ::
i.info == removeUser(u) && i.result != NoResult()
==> exists c: callId :: c.origin == i && c.op == user_delete(u)

invariant !(exists write: callId, delete: callId,
u: UserId, v: String ::

(write.op == user_mail_assign(u, v) || write.op == user_name_assign(u, v))
&& delete.op == user_delete(u)
&& delete happened before write)

The first invariant links invocations of the data-access API with the corresponding
calls happening on the database: For every completed call of the removeUser procedure,
there must be a database call deleting the corresponding entry from the user map.

The second invariant states that there are no database calls updating an entry in the
user map after it has been deleted. This invariant could be violated when we removed the
atomic block, as visualized by the arrow from the delete-call to the mail_assign-call
in Figure 2.17.

(b) Correct Eventual Consistency tool (CEC)

The CAP theorem states that when a network partitions (which is unavoidable in real-
world scenarios), an application can either be available (AP) or consistent (CP). Most
of the distributed applications lie in between the two ends of the spectrum of AP and
CP. Therefore, developers have to find the optimal equilibrium between availability and
consistency, one that ensures the application remains highly available while upholding
the application invariants. Most of these applications use a combination of weak and
strong consistency models [8, 39] to coordinate the execution of operations when the
correctness of applications is at risk, and leverage the benefits of asynchronous execution
when operations are safe.

In order to aid in this design process, CISE logic was introduced by Gotsman et.
al [30]. The work provides a modular proof rule for verifying whether a particular con-
sistency level for each operation preserves the application invariant. Informally, the proof
rule defines the conditions (commutativity, safety, and stability) under which the appli-
cation invariant is preserved.

The CEC tool [44] receives the specification of an application, and outputs pairs of
operations that might break the correctness of the application if executed concurrently.
With that information, it is possible to derive sets of tokens, that can be associated with
operations, to pin-point where in an application the coordination is required. The CEC
tool automates the proof rule defined and proved sound in [30], ensuring that the coordi-
nation generated for a given application is correct.

The specifications are written in Boogie [10], a versatile intermediate verification
language, which gives the programmer the ability to specify more complex behaviors for

LightKone D6.1(v0.1), December 31, 2017, Page 22

CONTENTS

type Tournament;
type Player;
var enrollment: [Player, Tournament] bool;
var tournaments: [Tournament] bool;
var players: [Player] bool;

function invariant() returns(bool)
{

forall t: Tournament, p: Player ::
enrollment[p,t] ==> tournaments[t] && players[p]

}

procedure addTournament(t1: Tournament)
modifies tournaments;
requires true;
ensures forall t: Tournament ::
t == t1 ==> tournaments[t1] == true
&&
t != t1 ==> tournaments[t] == old(tournaments)[t]; { }

procedure remTournament(t1: Tournament)
modifies tournaments;
requires !exists p: Player :: enrollment[p, t1];
ensures forall t: Tournament ::
t == t1 ==> tournaments[t1] == false
&&
t != t1 ==> tournaments[t] == old(tournaments)[t]; { }

// addPlayer and remPlayer can be similarly defined.

procedure enroll(p1: Player, t1: Tournament)
modifies enrollment;
requires players[p1] == true && tournaments[t1] == true;
ensures forall p: Player, t: Tournament ::
p == p1 && t == t1 ==> enrollment[p1,t1] == true
&&
p != p1 || t != t1 ==> enrollment[p,t] == old(enrollment)[p,t]; { }

Figure 2.18: Tournament management application: Boogie specification.

operations. The tool provides support for using complex data types and it is possible to
write modular specifications using libraries.

System model We assume a database system composed by a set of objects fully repli-
cated. An application is defined as a set operations and a set of invariants expressing
the data integrity constraints. Each operation has an associated precondition stating the
conditions that have to be guaranteed for its safe execution. When an application submits
an operation to the local replica, the precondition is checked on the local database state.
If the precondition holds, the operation is executed locally, and its effects are propagate
asynchronously to remote replicas. Otherwise, the operation has no effect. As in [30], it
assumes causal propagation of operation effects.

The abstract coordination mechanism is a token system as defined in [30]. It consists
of a set of tokens and a symmetric conflict relation over tokens. Each operation may have
an associated set of tokens, ensuring that other operations with conflicting tokens cannot
be executed concurrently and their execution has to be coordinated.

It is assumed that the programmer annotates the application code with a Boogie spec-
ification that describes the database state, data invariants, preconditions, and effects of
each operation. To illustrate the analysis, consider the distributed tournament manage-
ment application of Figure 2.18: addTournament(t) and remTournament(t) register and

LightKone D6.1(v0.1), December 31, 2017, Page 23

CONTENTS

Operations’ tokens:
enroll(p,t) : { token_ep(p), token_et(t) }
remTournament(t) : { token_rt(t) }
addTournament(t) : { }
remPlayer(p) : { token_rp(p) }
addPlayer(p) : { }

Conflict relation:
token_ep(p) : token_rp(p)
token_rt(t) : token_et(t)
token_rp(p) : token_ep(p)
token_et(t) : token_rt(t)

Figure 2.19: Tournament management application: Generated token system.

remove tournament t, respectively; addPlayer(p) registers player p; and, enroll(p, t) en-
rolls player p in tournament t. This application has to ensure an integrity invariant: if
player p is enrolled in tournament t, both player p and tournament t must be registered.

The input specification is then analysed in three distinct steps.

Safety analysis The first step checks whether each individual operation preserves the
invariant. This is done to validate the correction of the specification given as in-
put. In the example, if operation remTournament(t) did not have the precondition
requiring that no player is enrolled in tournament t, the operation would fail the
safety analysis.

Commutativity analysis The second step verifies commutativity between all pairs of
operations. It outputs the subset of these pairs that are not commutative, as well
as the sets of tokens needed to address this issue. In the example, operations
addTournament(t) and remTournament(t) do not commute, while addPlayer(p)
and addTournament(t) are commutative.

Stability analysis The third step checks the stability of each operation precondition
against all other operations effects. It provides the programmer with the set of pairs
of operations that cannot be executed concurrently, as they can break the applica-
tion’s invariant. It also outputs the set of tokens needed to avoid their concurrent
execution. For example, the precondition of enroll(p, t) is not stable under concur-
rent execution of remTournament(t), while the precondition of addTournament(t)
is stable under the effects of enroll(p, t).

In each step of the analysis the tool generates a set of tokens that are used to pre-
vent conflicting pairs of operations from executing concurrently. These tokens are based
on the parameters of each operation. More specifically, the tool checks different param-
eter values for each pair of operations, identifying which combinations of parameters
might invalidate the invariant. The tool leverages the Boogie verification engine to de-
tect efficiently the problematic combination of parameters. The output is a token system,
indicating the relations between conflicting parameters (see Figure 2.19).

Previous work [8, 30] has demonstrated that replicated data types (CRDTs) can be
used to solve some conflicting pairs of operations without using coordination. CEC tool
provides a small library of generic CRDT types that can be used by the programmer.
With this library the programmer has the choice between using either tokens or CRDTs,
as a way to solve conflicting operations.

LightKone D6.1(v0.1), December 31, 2017, Page 24

CONTENTS

An experience report is available [47]. The report demonstrates various sample spec-
ifications verified using the tool and the recommendations on improving it.

2.3 Further work on data storages for heavy-edge systems

(a) Blotter: Geo-replication with strong consistency

AntidoteDB is a geo-replicated storage systems that adopts a weak consistency model
for providing low latency and high availability. However, there is a class of applications
that cannot run under weak consistency, and require strong consistency and transactions.
For instance, many applications within Google are operating on top of Megastore [7]
and Spanner [18], systems that provides ACID semantics within the same shard or in
the global database. A number of other works have proposed protocols for providing
strongly consistent geo-replication [36, 42, 43, 53, 61, 70].

Besides exploring the Just-Right Consistency approach, and providing mechanisms
that allow applications to maintain global invariants while minimizing coordination, we
are also exploring alternative protocols for run transactions with strong consistency for
geo-replicated data. In this section we overview Blotter [46]6, a protocol for executing
transactions in geo-replicated storage systems with non-monotonic snapshot isolation
semantics. For the readers convenience the complete text of the original publication is
reproduced in the Appendix.

Non-monotonic snapshot isolation NMSI is an evolution of Snapshot Isolation (SI).
Under SI, a transaction (logically) executes in a database snapshot taken at the transaction
begin time, reflecting the writes of all transactions that committed before that instant.
Reads and writes execute against this snapshot and, at commit time, a transaction can
commit if there are no write-write conflicts with concurrent transactions. (In this context,
two transactions are concurrent if the intervals between their begin and commit times
overlap.)

NMSI weakens the SI specification in two ways. First, the snapshots against which
transactions execute do not have to reflect the writes of a monotonically growing set
of transactions. In other words, it is possible to observe what is called a “long fork”
anomaly, where there can exist two concurrent transactions ta and tb that commit, writing
to different objects, and two other transactions that start subsequently, where one sees
the effects of ta but not tb, and the other sees the effects of tb but not ta. The next figure
exemplifies an execution that is admissible under NMSI but not under SI, since under SI
both T3 and T4 would see the effects of both T1 and T2 because they started after the
commit of T1 and T2.

T1
b w[x1] c

T2
b w[y1] c

T3
b r[x1] r[y0] c

T4
b r[x0] r[y1] c

time

Second, instead of forcing the snapshot to reflect a subset of the transactions that
committed at the transaction begin time, NMSI gives the implementation the flexibil-
ity to reflect a more convenient set of transactions in the snapshot, possibly including

6The paper can be found in the Appendix.

LightKone D6.1(v0.1), December 31, 2017, Page 25

CONTENTS

transactions that committed after the transaction began. This property, also enabled by
serializability, is called forward freshness [53].

Definition 2.1 (Non-Mon. Snapshot Isol. (NMSI)) An implementation of a transactional
system obeys NMSI if, for any trace of the system execution, there exists a partial order
≺ among transactions that obeys the following rules, for any pair of transactions ti and
t j in the trace:

1. if t j reads a value for object x written by ti then ti ≺ t j∧@tk writing to x : ti ≺ tk ≺ t j

2. if ti and t j write to the same object x then either ti ≺ t j or t j ≺ ti.

The example in Figure 2.20 obeys NMSI but not SI, as the depicted partial order
meets Definition 2.1.

T1
b r[y0] w[x1] c

T2
b r[y0] r[x1] w[x2] c

time

T0 ≺ T1 ≺ T2

Figure 2.20: Example execution obeying NMSI but not SI. This assumes the existence of
a transaction T0 that writes the initial values for x and y.

Protocols Blotter is designed to run on top of any distributed storage system with nodes
spread across one or multiple data centers. We assume that each data object is replicated
at all data centers. Within each data center, data objects are replicated and partitioned
across several nodes. We make no restrictions on how this intra-data center replication
and partitioning takes place.

The client library of Blotter exposes an API with the expected operations: begin a
new transaction, read an object given its identifier, write an object given its identifier
and new value, and commit a transaction, which either returns commit or abort.

The set of protocols that comprise Blotter, detailed in appendix A, are organized into
three different components:
Blotter intra-data center replication. At the lowest level, we run an intra-data center
replication protocol, to mask the unreliability of individual machines within each data
center. This level must provide the protocols above it with the vision of a single logi-
cal copy (per data center) of each data object and associated metadata, which remains
available despite individual node crashes. We do not prescribe a specific protocol for this
layer, since any of the existing protocols that meet this specification can be used.
Blotter Concurrency Control. These are the protocols that ensure transaction atomicity
and NMSI isolation in a single data center, and at the same time are extensible to multiple
data centers by serializing a single protocol step.
Inter-data Center Replication. This completes the protocol stack by replicating a sub-
set of the steps of the concurrency control protocol across data centers. It implements
state machine replication [37, 57] by judiciously applying Paxos [38] to the concurrency
control protocol to avoid unnecessary coordination across data centers.

LightKone D6.1(v0.1), December 31, 2017, Page 26

CONTENTS

Final Remarks In the context of AntidoteDB we are currently studying alternatives to
support applications that require strong consistency. Blotter is one those alternatives, as
it allows executing transactions in geo-replicated storage systems with non-monotonic
snapshot isolation semantics. When compared with alternative semantics for strong con-
sistency, NMSI allows more concurrency and better performance, as shown in the evalu-
ation presented in Moniz et. al. [46].

(b) Tradeoffs in reducing read latencies

This work [64] studies the costs of reading data in a distributed, transactional storage sys-
tem. In particular, we try to understand whether it is possible to provide strong read guar-
antees while ensuring both fast performance and fresh data. Read guarantees are useful
as they simplify the development of applications over distributed storage by disallowing
a number of anomalies sourced in concurrency, pervasive in distributed environments.
Intuitively, stronger guarantees will heavier implementations. A recent paper from Face-
book (whose performance is strongly read-dominated) states:“stronger properties have
the potential to improve user experience and simplify application-level programming [. . .
but] are provided through added communication and heavier-weight state management
mechanisms, increasing latency [. . .] This may lead to a worse user experience, po-
tentially resulting in a net detriment” [2]. Is this wariness justified, i.e., is it inherently
impossible to combine fast reads with strong guarantees, or can the situation be improved
by better engineering? This work provides a formal and operational study of the costs and
trade-offs. Our main finding is that there is a three-way trade-off between read guaran-
tees, read delay (and hence latency), and freshness, and that some desirable combinations
are impossible. Our second contribution is protocols that are optimal in terms of latency,
and offer different semantics and levels of freshness.

It is well known that non-serialisable models, such as Snapshot Isolation [12] or
Highly-Available Transactions [5], can improve availability and performance, particu-
larly in highly distributed deployments such as edge environments. Therefore, this study
does not necessarily assume that updates are totally ordered.7 Furthermore, we allow
weakening the read guarantees: in addition to Atomic Visibility, the strongest guarantee,
which is assumed in most classical transactional models, we also consider (the weaker)
Order-Consistent Visibility, enforced by recent causally-consistent systems [41], and (the
weakest) Committed Visibility, equivalent to the traditional Read Committed isolation
level [4]. Finally, we also consider the freshness dimension, because (as we show) de-
creasing the read delay sometimes forces to read a version of the data that is not the most
recent.

Snapshot guarantees. Snapshot guarantees constrain the states of the data items that
can be accessed by a given snapshot. The stronger guarantees provide higher isolation,
and thus facilitate reasoning by the application developer. As we shall see, the weaker
ones enable better performance along the freshness and delay metrics.

We distinguish the following levels:
• At the weakest level, Committed Visibility, a snapshot may include any updates

that have been committed. As it sets no constraints between items, it allows many

7 Enforcing a total order of transactional updates enables Consistency under Partition (CP); but, con-
versely, Availability under Partition (AP) requires accepting concurrent updates [59].

LightKone D6.1(v0.1), December 31, 2017, Page 27

CONTENTS

anomalies. For performance reasons, it is used in several production systems [15,
17, 50].
• Order-Consistent Visibility strengthens Committed Visibility by ensuring that the

snapshot is consistent with a some (partial or total) order relation O.
O might be the (partial) happens-before order, in order to enforce causal consis-
tency [1, 37], or the total order of updates in the context of a strong isolation crite-
rion such as Serialisability or Snapshot Isolation [12, 14].
• The strongest is Atomic Visibility, which is order-consistent, and additionally dis-

allows the “broken reads” phenomenon [6]: if the transaction reads some data item
written by another transaction, then it must observe all updates written by that
transaction (unless overwritten by a later transaction).
Many isolation levels require Atomic Visibility, e.g., Serialisability, Snapshot Iso-
lation or Transactional Causal Consistency [3].

Order-Consistent Visibility ensures that transactions do not observe gaps in a pre-
scribed order relation. Consider, in a social network, the data items photos and acl rep-
resenting user Alice’s photo album and the associated permissions. The set of their states
(initially photos0 and acl0) is ordered by the happened-before relation → [37]. Alice
changes the permissions of her photo album from public to private (new state acl1), then
adds private photos to the album (state photos2). Thus, acl0→ acl1→ photos2. Order-
Consistent visibility disallows the situation where Bob would observe the old permissions
(acl0) along with the new photos (photos2), missing out on the restricted permissions
(acl1).

This pattern, where the application enforces a relation between two data items by issu-
ing updates in a particular order, is typical of security invariants [59]. It also helps to pre-
serve referential integrity (create an object before referring to it, and destroy references
before deleting the referenced object). Order-Consistent Visibility under Happened-
Before order is called Causal Consistency [1].

Atomic Visibility serves to maintain equivalence or complementarity between data
items [59]; for instance, ensuring that Alice is a friend of Bob if and only if Bob is a friend
of Alice. Thus, it helps to maintain materialised views [6]; for instance, materialising the
cardinality of a set (say the set of comments on a post) by atomically observing the
updates to the set and to the materialised count.

Delay. Read latency is an important performance metric, especially for services that
are heavily read-dominated, such as social networks. For instance, serving a Facebook
page requires several rounds, where each round reads many items, and what is read in
one round depends on the results of the previous ones; this amounts to tens of rounds and
thousands of items for a single page [15]. Furthermore, serving requests with low latency
keeps users engaged and directly affects revenue [22, 40, 58].

The fastest read protocol, which will be our baseline, is one that addresses multiple
servers in parallel within a round, and where any one server responds immediately, in a
single round-trip, without coordinating with other servers. Intuitively, this design makes
it difficult to ensure strong snapshot guarantees.

We will characterise protocols by estimating the added delay above this baseline.
Minimal delay is identical to the baseline. Examples include Linkedin’s Espresso [50]
and Facebook’s Tao [15].

Bounded delay means that parallel reads are not supported, that a small number of

LightKone D6.1(v0.1), December 31, 2017, Page 28

CONTENTS

retry round-trips may occur to read from a server, and/or that a server may block for a
small amount of time before replying to a read request. An example is COPS, which
sometimes requires a second round-trip to storage servers to read a causally-consistent
snapshot [41].

Mutex reads/writes means that a read might be delayed indefinitely by writes, or vice-
versa, because the protocol disallows the same data item from being read and written
concurrently (e.g., Google’s Spanner strictly-serialisable transactions [18]).

Freshness. Another important metric is how recent is the data returned by a read. Users
prefer recent data [65]; some isolation levels (e.g., Strict Serialisability) require data to
be the latest version; and in others (e.g., Snapshot Isolation) serving recent data makes
aborts less likely and hence improves overall throughput [49, 53]. Storing only the most
recent version of a data item enables update-in-place and avoids the operational costs of
managing multiple versions. In particular, keeping multiple versions of each data item
on servers with restricted resources, such as edge-servers, can be problematic.

However, MVCC protocols [13] require maintaining multiple versions of a data item.
Serving an old item may be faster than waiting for the newest one to become available;
indeed, it would be easy to be both fast and consistent, by always returning the initial
state.

Freshness is a qualitative measure of whether snapshots include recent updates or not.
The most aggressive is Latest Freshness, which allows a server to return the most recent
committed version of any data item that it stores. Intuitively, systems like Espresso and
Tao [15, 50], which do not make strong snapshot guarantees, can read with no minimal
delay under latest freshness.

The most conservative is Stable Freshness, which enables fast reads by restricting
a server to return data from a stable snapshot, a snapshot known to be ready when the
transaction started. Spanner’s serialisable read-only transactions [18] exhibit this charac-
teristic.

The intermediate level Forward Freshness does not necessarily return the latest ver-
sion, but allows a server to read updates that are not stable, for instance those from
a committed transaction that ran concurrently with the reader. For instance, COPS’s
causally-consistent snapshot reads [41] exhibit forward freshness.

Optimal reads. We say a protocol has optimal read performance (in short, provides
optimal reads) if it ensures both minimal-delay and latest freshness. An optimal-read
protocol is one that supports parallel reads, and where a server is always able to reply to
a read request immediately, in a single round trip, with the latest committed version that
it stores.

The trade-off. Figure 2.21 illustrates the three-way trade-off between read guarantees,
read delay, and read freshness. We summarize here the main results and implications for
the edge environment:
• under Atomic Visibility, it is possible to read with no extra delay (compared to a

non-transactional system), but then the freshest data is not accessible, only data that
was stable (written and acknowledged) before the transaction started. In practice,
this can require keeping multiple object versions of each data item, which might
not be an option in some edge environments.

LightKone D6.1(v0.1), December 31, 2017, Page 29

CONTENTS

Figure 2.21: The three-way trade-off. The boxed areas represent possible guarantee/read
delay/freshness combinations. Upwards and right is better performance; guarantees are
stronger from back to the front planes.

• Under Order-consistent (e.g., causally-consistent) transactional reads, it is possible
to read with no extra delay, while achieving optimal freshness. Indeed, this model
is a contribution of this work. Such model might be interesting to provide some
level of isolation to applications in the edge, at a modest cost in multi-version
overhead.
• If, on the other hand, the application requires the freshest data, under either Atomic

or Consistent Visibility this is possible only under a protocol where reads and
writes are mutually exclusive, e.g., a read might be delayed (blocked, or in a retry
loop) indefinitely by writes, or vice-versa.
• Finally, the only model that allows transactions to access the freshest data with no

extra delay is Committed Visibility.

Protocols. As a practical validation of these results, we design and implement three
protocol variants, all with minimal delay. We apply the trade-off analysis to protocol
design. Motivated by the tight performance requirements of cloud services, we modify
an existing protocol to derive three minimal-delay read protocols, called CV, OC and AV,
which ensure respectively Committed Visibility, Order-Consistent Visibility, and Atomic
Visibility.

We derive these protocols from Cure [3], the transactional causally-consistent pro-
tocol of AntidoteDB. Cure ensures Atomic Visibility, bounded delay and forward fresh-
ness. Using the insights taken from the analysis, we improve upon Cure’s delays to ensure
minimal-delay: one can either degrade read semantics or freshness. Each protocol occu-
pies a different point in the three-way trade-off. Cure belongs in Sector 5 of Figure 2.21.
Since CV ensures Committed Visibility, it can have both minimal delay and latest fresh-
ness (Sector 3 in the figure). To provide Order-Consistent Visibility with minimal delay,
the best possible freshness for OC is forward freshness (Sector 2). Similarly, to provide
Atomic Visibility, AV has stable freshness (Sector 1).

In our evaluation measurements in a deployment consisting of 32 machines, the three
protocols have similar latency; our protocol for Committed Visibility always observes
the most recent data, whereas freshness degrades negligibly for Order-Consistent reads,
and the degradation is severe under Atomic Visibility.

LightKone D6.1(v0.1), December 31, 2017, Page 30

CONTENTS

(c) Transparent speculation in partially replicated transactional stores

Online services are often deployed over geographically-scattered data centers, which
allows services to be highly available and reduces access latency. On the downside,
to provide ACID transactions, global certification (i.e., across data centers) is needed
to detect conflicts between concurrent transactions executing at different data centers.
The global certification phase reduces throughput because transactions need to hold pre-
commit locks, and it increases client-perceived latency because global certification lies
in the critical path of transaction execution.

Internal and external speculation. We investigate the use of two speculative techniques
to alleviate the above problems: speculative reads and speculative commits.

Speculative reads allow transactions to observe the data item versions produced by
pre-committed transactions, instead of blocking until they are committed or aborted.
Speculative reads can reduce the effective duration of pre-commit locks, thus increasing
throughput and reducing latency. Speculative reads are a form of internal speculation, as
misspeculations never surface to clients.

Speculative commits remove the global certification phase from the critical path of
transaction execution, which further reduce user-perceived latency. Speculative commits
are a form of external speculation, since they expose to clients the results produced by
transactions still undergoing global certification. Thus, speculative commits require pro-
grammers to define compensation logic to deal explicitly with misspeculations.

Avoiding the pitfalls of speculation. Past work has shown that the use of speculative
reads and speculative commits [31, 34, 52] can enhance the performance of transactional
systems. However, these approaches suffer from several limitations:

1. Unfit for geo-distribution/partial replication. Some existing works in this area
were not designed for partially replicated geo-distributed data stores, as they either target
full replication [52] or rely on a centralized sequencer that imposes prohibitive costs in
WAN environments [34].

2. Subtle concurrency anomalies. Existing geo-distributed transactional data stores
that support speculative reads [31] expose applications to anomalies, e.g., data snapshots
that reflect partial updates of transactions or include versions of conflicting concurrent
transactions. Such anomalies can be dangerous, as they can lead applications to exhibit
unexpected behaviors (e.g., crashing or hanging in infinite loops) and externalize erro-
neous states to clients.

3. Performance robustness. In adverse scenarios (e.g., high contention), the in-
judicious use of speculative techniques can severely penalize performance, rather than
improving it.

To overcome the aforementioned problems, we propose Speculative Transaction Repli-
cation (STR), a novel speculative transactional protocol for partially replicated geo-
distributed data stores. STR avoids the problems of centralization by using loosely syn-
chronized clocks, similar to Clock-SI [23]. STR avoids the concurrency anomalies intro-
duced by speculation by obeying a new concurrency criterion called Speculative Snapshot
Isolation (SPSI). In addition to guaranteeing Snapshot Isolation (SI) for committed trans-
actions [23], SPSI allows an executing transaction to read data item versions committed
before it started (as in SI), and to atomically observe the effects of non-conflicting trans-
actions that originated on the same node and pre-committed before it started. Finally, to
enhance performance robustness STR employs a lightweight self-tuning mechanism that

LightKone D6.1(v0.1), December 31, 2017, Page 31

CONTENTS

uses hill climbing based on workload measurements to dynamically adjust the aggres-
siveness of the speculative mechanisms. Our evaluation shows that the use of internal
speculation yields 10× throughput increase and 10× latency reduction in a fully trans-
parent way. Furthermore, applications that exploit external speculation can achieve a
reduction of user-perceived latency by up to 100×. These numbers are achieved for
both synthetic and realistic workloads with low inter-data center contention, while the
self-tuning mechanism ensures gradual fallback to a standard non-speculative processing
mode as contention increases.

(d) Multimodal Indexable Encryption for Mobile Cloud-based Applications

Following the security analysis of D2.1., it also comes of high importance addressing
data protection requirements in the heavy edge. In this context, we have been exploring
secure encryption schemes and protocols that can protect data privacy and integrity while
still allowing its efficient operation and computation. Efficiently indexing and searching
of encrypted data in the cloud, in particular, would be very a interesting result for the
project, as it would allow lightweight devices on the light edge to securely outsource
their most expensive computations to the heavy edge.

Addressing this problem we proposed MIE, a Multimodal Indexable Encryption frame-
work that supports mobile applications dynamically storing, sharing, and searching mul-
timodal data (i.e. data with multiple media formats simultaneously) in public cloud in-
frastructures while preserving privacy [26]8. MIE’s functionality and security are based
on a novel family of encoding algorithms with cryptographic properties, that we also
proposed, called DPE - Distance Preserving Encodings. DPE schemes securely encode
data while preserving a controllable distance function between plaintexts. By extract-
ing feature-vectors from multimodal data and encoding them with DPE, mobile devices
running MIE are able to outsource training and indexing computations to the cloud in a
privacy-preserving way.

DPE: Distance Preserving Encodings Informally, Distance Preserving Encodings (DPE)
are a family of encoding schemes that preserve a controllable distance function between
plaintexts, by means of their respective encodings. We say the distance function is con-
trollable, meaning that on instantiation of a DPE scheme a security threshold parameter
should be defined, which will allow controlling the amount of information leaked by
encodings. More specifically, DPE encodings should only preserve distances between
plaintexts up to the value of the threshold. For greater distances, nothing should be
leaked by DPE encodings. This threshold allows defining an upper bound on information
leakage and security, as it will limit the adversarial ability to perform statistical attacks
and establish a distance relation between different plaintexts in the application domain.
More formally:

Definition 2.2 (Distance Preserving Encoding) A Distance Preserving Encoding (DPE)
scheme is a collection of three polynomial-time algorithms (KEYGEN, ENCODE, DIS-
TANCE) run by a client and a server, such that:
• K, t ← KEYGEN(1k): is a probabilistic key generation algorithm run by the client

to setup the scheme. It takes the security parameter k and returns a secret key K and a

8The paper can be found in the Appendix.

LightKone D6.1(v0.1), December 31, 2017, Page 32

CONTENTS

distance threshold t, both function of and polynomially bounded by k.
• e← ENCODE(K, p): is a deterministic algorithm run by the client to encode plain-

text p with key K, with p polynomially bounded by k. It outputs an encoding e.
• D← DISTANCE(e1,e2): is a deterministic algorithm run by the server that takes

as input two encodings e1 and e2. For plaintext distance function [0,1]← dp(·, ·) and
encoded distance function [0,1]← de(·, ·) (possibly dp = de) with inputs polynomially
bounded by k, it outputs D = de(e1,e2) = dp(p1, p2), if dp(p1, p2) < t. Otherwise it
outputs D = t.

Given the definition of DPE, in [26] we formally specify all information leaked by its
algorithms to an honest-but-curious cloud adversary. Additionally, two implementations
of DPE are provided, one for dense media types (e.g. images, audio, and video), and
another for sparse media (e.g. text). Both implementations are then used to implement
an efficient prototype of MIE.

MIE: a Multimodal Indexable Encryption Framework In MIE we leverage the pre-
vious DPE definition and its two implementations to outsource training and indexing
computations of multimodal data from mobile devices to the cloud servers. This is done
in a privacy-preserving way by having users extract feature-vectors from the different
media formats, encode them with DPE, and upload the encodings to the cloud for com-
putation.

From a systems perspective, MIE is defined as a distributed framework with two
main components: one running in the mobile device(s), which processes multimodal
data, extracts feature-vectors in their different modalities, and encrypts them; and another
(untrusted) running in the cloud servers, which performs training tasks and indexes data-
objects through their encoded features. More formally:

Definition 2.3 (Multimodal Indexable Encryption) A Multimodal Indexable Encryp-
tion framework is a collection of five polynomial time algorithms (CREATEREPOSITORY,
TRAIN, UPDATE, REMOVE, SEARCH) executed collaboratively between a user and a
server, such that:
• rkR← CreateRepository(IDR,1spR,{IDmi}n

i=0): is an operation started by the
user to initialize a new repository identified by IDR. It also takes as input a security
parameter spR and the n modalities to be supported by R ({IDmi}n

i=0). It creates a repos-
itory representation on the server side and outputs a repository key rkR.
• Train(IDR,rkR,{IDmi, ipmi}n

i=0): operation invoked by the user to initialize repos-
itory R’s indexing structures, by performing machine learning tasks (i.e. automatic train-
ing procedures), and index its data-objects, if any. The user also inputs the repository
key and the indexing algorithms to be used as indexing parameters ({IDmi, ipmi}n

i=0, one
for each modality.
• Update(IDR,IDp,p,dkp,rkR,{IDmi}n

i=0): is the operation used to dynamically
add or update a data-object p in repository R. In addition to p, it also takes as input IDR
and IDp (deterministic identifiers of R and p, respectively), dkp (data key to be used in
the encryption of p), rkR (repository key of R) and {IDmi}n

i=0 (the modalities represented
in p).
• Remove(IDR,IDp): is an operation that allows a user to fully remove a data-object

p from repository R and its indexing structures.

LightKone D6.1(v0.1), December 31, 2017, Page 33

CONTENTS

• {IDpi,pi,scoreq
pi}k

i=0← Search(IDR, q, rkR, {IDmi}n
i=0, k): is issued by a user to

search in repository R with object q as query, returning the k most relevant data-objects in
the repository. Also takes as input the repository key rkR and the modalities represented
in q ({IDmi}n

i=0).

Given MIE’s definition, in [26] we detail its construction and implementation. We
also clearly define the leakage of MIE’s operations and formally prove its security prop-
erties.

(e) Consistency Upgrades for Online Services

Online services, such as Facebook or Twitter, have public APIs to enable an easy inte-
gration of these services with applications. In a previous work [27], we have shown that
these services exhibit consistency anomalies, providing a consistency levels weaker than
causal consistency. This makes designing applications complex, since application devel-
opers have to reason on how to enforce the semantics of their applications in the presence
of those anomalies.

To overcome this challenge, we have developed a middleware that enables a fine-
grained control over the session guarantees that comprise the consistency semantics pro-
vided by such systems, without having to gain access or modify the implementation of
those services. To demonstrate the feasibility of our approach we have applied it for
the Facebook public API and the Redis datastore, allowing to have fine-grained control
over the consistency semantics observed by clients with a small local storage and modest
latency overhead.

As this work can be used in the light edge, it is also addressed in D5.1. Here, we
briefly overview the algorithms proposed. This work was originally published in [28].
For the readers convenience the complete text of the original publication is in the Ap-
pendix.

Algorithms In this section we detail the algorithms that are employed by our Middle-
ware layer to enforce session guarantees, and the rationale for their design. To this end,
we briefly remind what each of the four session guarantees entails (we extend the defini-
tions previously introduced in [28]), and then explain why our algorithms ensure that the
anomalies associated with each of the session guarantees are prevented by it.

We explain our algorithms assuming that the service offers an interface with the fol-
lowing two functions, which are in practice easily mapped to functions that are supported
by the various services that we analyzed: the insertion of an element in a given list Lst,
denoted by the execution of function insert(Lst,ElementID,Value), where Lst identi-
fies the list being accessed, ElementID denotes the identifier of the element being added
(which can be an identifier generated by the centralized service or a unique identifier gen-
erated by our Middleware), and Value stands for the value of the element being added
to the list; and the access to the contents of a list, denoted by the execution of function
get(Lst), where Lst identifies the list being read by the client.

When the client accesses a list Lst for the first time, a special initialization procedure
is triggered internally by our Middleware (Alg. 1), which initializes the local state regard-
ing the accesses to Lst. The initialization is straightforward: it creates the object lstState
that maintains all relevant information to manage the accesses to Lst (line 2). This state

LightKone D6.1(v0.1), December 31, 2017, Page 34

CONTENTS

Algorithm 1: Initialization of local state
1: upon init(Lst) do
2: lstState← init()
3: lstState.insertSet← {}
4: lstState.localView← {}
5: lstState.lastTimestamp← 0
6: lstState.insertCounter← 0
7: listStates[Lst]← lstState

Algorithm 2: Read Your Writes
1: function insert(Lst, ElementId, Value) do
2: lstState← listStates[Lst]
3: Element e← init()
4: e.v← Value
5: e.id← ElementId
6: e.timestamp← obtainServiceTimeStamp()
7: SERVICE.insert(Lst, ElementId, e)
8: lstState.insertSet← e ∪ lstState.insertSet

9: function get(Lst) do
10: lstState← listStates[Lst]
11: sl← SERVICE.get(Lst)
12: sl← orderByTimestamp(sl)
13: sl← addMissingElementsToSL(sl, lstState.insertSet, lstState.lastTimestamp)
14: sl← purgeOldElementFromSL(sl, lstState.insertSet, lstState.lastTimestamp)
15: lstState.lastTimestamp← getLastTimestamp(sl)
16: return removeMetadata(subList(sl, 0, N))

is composed by the sets insertSet and localView that were discussed previously, and
that are initially empty (lines 3− 4). Furthermore, two other variables are initialized,
lastTimestamp, which is used to maintain information regarding elements that were re-
moved from the previously discussed sets, and insertCounter, which tracks the number
of inserts performed by the local client in the context of the current session. Both of these
variables have an initial value of zero (lines 5−6). Finally, the lstState variable is stored
in a local map, associated to the list Lst (line 7). Next, we explain how this local state is
leveraged by our algorithms to enforce the various session guarantees.

Read Your Writes: The Read Your Writes (RYW) session guarantee requires that,
in a session, any read observes all writes previously executed by the same client. More
precisely, for every set of insert operations W made by a client c over a list L in a given
session, and set S of elements from list L returned by a subsequent get operation of c over
L, we say that RYW is violated if and only if ∃x ∈W : x /∈ S.

This definition, however, does not consider the case where only the N most recent
elements of a list are returned by a get operation. In this case, some writes of a given
client may not be present in the result if more than N other insert operations have been
performed (by client c or any other client). Considering that the list must hold the most
recent writes, a RYW anomaly happens when a get operation returns an older write
performed by the client but misses a more recent one. More formally, given two writes
x, y over list L executed in the same client session, where x was executed before y, an
anomaly of RYW happens in a get that returns S when ∃x,y ∈W : x≺ y∧ y /∈ S∧ x ∈ S.

Alg. 2 presents our algorithm for providing RYW. To avoid the anomaly described
above, the idea is to store, locally at the client, all elements that are inserted by the local

LightKone D6.1(v0.1), December 31, 2017, Page 35

CONTENTS

Algorithm 3: Monotonic reads
1: function insert(Lst, ElementID, Value) do
2: Element e← init()
3: e.id← ElementID
4: e.v← Value
5: SERVICE.insert(Lst, ElementID, e)

6: function get(Lst) do
7: lstState← listStates[Lst]
8: sl← SERVICE.get(Lst)
9: lstState.localView← appendNewElementsToTop(sl, lstState.localView)
10: return removeMetadata(subList(lstState.localView, 0, N))

client in the list and add them to the result of get operations. In the insert operation, the
inserted element is stored locally by the client (line 8). Additionally, our algorithm stores
some metadata in the object before performing the insert operation over the centralized
service (lines 5− 6). This information represents, respectively, the identifier of the ele-
ment and a timestamp for the insert operation. The element identifier is used to uniquely
identify the writes. The timestamp and element identifier allow for totally ordering all
entries in the insertSet, with the order being approximately that of the real-time order of
execution. Note that the operation in line 12 also checks if the timestamps retrieved from
the service in the same session are monotonically increasing, and, if not, enforces that
property by overwriting the returned timestamp with an increment of the most recent one;
this is important to avoid reordering events from the same session in case the timestamp
provided by the server does not increase monotonically for some reason.

For executing a get operation (line 9) our algorithm starts by executing the get oper-
ation over the service (line 11). Then, the returned list (sl) is ordered (line 12) and all
elements of the local insertSet that are missing in the list are added to the list, keeping
it ordered (line 13). Before returning the most recent N elements (with no metadata)
(line 16), our algorithm removes old session elements from the sl list and updates the
lastTimestamp variable with the timestamp of the oldest element of the client session
returned to the client (lines 14−16).

Monotonic Reads: This session guarantee requires that all writes reflected in a read
are also reflected in all subsequent reads performed by the same client. To define this in
our scenario where a truncated list of N recent elements is returned, we say that MR is
violated when a client c issues two read operations that return sequences S1 and S2 (in
that order) and the following property holds: ∃x,y ∈ S1 : x ≺ y in S1 ∧ y /∈ S2 ∧ x ∈ S2,
where x≺ y means that element x appears in S1 before y.

To avoid this anomaly, our algorithm (presented in Alg. 3) resorts to the localView
variable to maintain information regarding the elements (and their respective order) ob-
served by the client in previous get operations. Therefore, when the client issues a get
operation, our Middleware issues the get command over the centralized service (line 8)
and then updates the contents of its localView with any elements that are returned by
the service and that were not yet within the localView (line 9). These new elements are
appended to the start of the list, as they are assumed to be more recent than those of the
current localView.

The algorithm terminates by returning to the client the N most recent elements in the
localView. These elements are exposed to the client without any of the metadata added

LightKone D6.1(v0.1), December 31, 2017, Page 36

CONTENTS

Algorithm 4: Monotonic Writes
1: function insert(Lst, ElementID, Value) do
2: lstState← listStates[Lst]
3: Element e← init()
4: e.id← ElementID
5: e.v← Value
6: e.clientSession← getClientSessionID()
7: e.sessionCounter← lstState.insertCounter++
8: SERVICE.insert(Lst, ElementID, e)

9: function get(Lst) do
10: lstState← listStates[Lst]
11: sl← SERVICE.get(Lst)
12: sl← sortElementsBySessionCounters(sl)
13: sl← removeElementsWithMissingDependencies(sl)
14: return removeMetadata(sl)

by our algorithms (line 10). Note that in this case the insert operation only issues the
corresponding insert command with additional metadata on the centralized service (lines
1−5).

A limitation of this algorithm is that it causes the localView set to grow indefinitely.
To avoid this, we associate with each element inserted in the list a timestamp (obtained
from the centralized service). This timestamp allows us to remove from the localView
any element with a timestamp smaller than the timestamp of the oldest element that was
in the last return to the client. We omit this from Alg. 3 for readability.

Monotonic Writes: This session guarantee requires that writes issued by a given
client are observed in the order in which they were issued by all clients. More precisely,
if W is a sequence of write operations made by client c up to a given instant, and S is a
sequence of write operations returned in a read operation by any client, a MW anomaly
happens when the following property holds, where W (x)≺W (y) denotes x precedes y in
sequence W : ∃x,y ∈W : W (x)≺W (y)∧ y ∈ S∧ (x /∈ S∨S(y)≺ S(x)).

However, this definition needs to be adapted for the case where only N elements of a
list are returned by a get operation. In this case, some session sequences may be incom-
plete, because older elements of the sequence may be left out of the truncated list of N
returned elements. Thus, we consider that older elements are eligible to be dropped from
the output, provided that we ensure that there are no gaps in the session subsequences
and that the write order is respected, before returning to the client. Formally, we can
redefine MW anomalies as follows, given a sequence of writes W in the same session,
and a sequence S returned by a read: (∃x,y,z ∈W : W (x) ≺W (y) ≺W (z)∧ x ∈ S∧ y /∈
S∧ z ∈ S)∨ (∃x,y ∈W : W (x)≺W (y)∧S(y)≺ S(x)).

Alg. 4 presents the algorithm employed by our Middleware to enforce the MW ses-
sion guarantee. We avoid the anomaly described above by adding metadata to each insert
operation (lines 1− 8) in the form of a unique client session id (clientSession – line 6)
and a counter (local to each client and session) that grows monotonically (sessionCounter
– line 7). This information allows us to establish a total order of inserts for each client
session.

This metadata is then leveraged during the execution of a get operation (lines 9−14)
in the following way. After reading the current list from the service (line 11), we simply
order the elements in the read list (sl) to ensure that all elements respect the partial orders
for each client session (line 12). Finally, an additional step is required to ensure that

LightKone D6.1(v0.1), December 31, 2017, Page 37

CONTENTS

Algorithm 5: Write Follows Read
1: function insert(Lst, ElementID, Value) do
2: lstState← listStates[Lst]
3: Element e← init()
4: e.id← ElementID
5: e.v← Value
6: e.cutTimestamp← obtainCutTimestamp(lstState.localView)
7: e.dependencies← projectElementIdentifiers(lstState.localView)
8: e.timestamp← obtainIncreasingServiceTimeStamp(lstState.localView)
9: SERVICE.insert(Lst, ElementID, e)

10: function get(Lst) do
11: lstState← listStates[Lst]
12: sl← SERVICE.get(Lst)
13: sl← removeElementsWithMissingDependencies(sl)
14: cutTimestamp← highestCutTimestamp(sl)
15: sl← removeElementsBelowCutTimestamp(sl, cutTimestamp)
16: lstState.localView← appendNewElementsByTimestamp(ls, lstState.localView)
17: lstState.localView← purgeOldElements(lstState.localView)
18: return removeMetadata(sl)

no element is missing in any of these partial orders. To ensure this, whenever a gap
is found within the elements of a given client session, we remove all elements whose
sessionCounter is above the one of any of the missing elements.

The get operation returns the contents that are left in the list sl without the metadata
added by our algorithms (line 14). Note that in this case we might return to the client
a list of elements with a size below N. We could mitigate this behavior by resorting to
the contents of the localView as we did in the algorithm to enforce MR. However, we
decided to provide the minimal behavior to enforce each of the session guarantees in
isolation.

Write Follows Read: This session guarantee requires that the effects of a write ob-
served in a read by a given client always precede the writes that the same client sub-
sequently performs. To formalize this definition, and considering that the service only
returns at most N elements in a list, if S1 is a sequence returned by a read invoked by
client c, w a write performed by c after observing S1, and S2 is a sequence returned by a
read issued by any client in the system; a violation of the WFR anomaly happens when:
w ∈ S2∧∃x,y ∈ S1 : x≺ y in S1∧ y /∈ S2∧ x ∈ S2.

Our algorithm to enforce this session guarantee is depicted in Alg. 5. The key idea
to avoid this anomaly is to associate with each insert the direct list of dependencies of
that insert, i.e, all elements previously observed by the client performing the insert (line
7). Evidently, this solution is not practical, since this list could easily grow to include
all previous inserts performed during the lifetime of the system. To overcome this limi-
tation, we associate with each insert a timestamp based on the clock of the service, but
with the restriction of being strictly greater than the timestamp of any of its direct depen-
dencies (line 8). Furthermore, we also associate with each insert a cut timestamp, that
defines the timestamp of its last explicit dependency, i.e, the dependencies registered in
the dependency list (line 6). The cut timestamp implicitly defines every element with a
higher timestamp to be a dependency of that insert operation. By combining these differ-
ent techniques, we ensure that the explicit dependency list associated with an insert has
at most N elements (which is the size of the localView maintained by our Middleware).

Since only N elements of a list are returned by a get operation, the older dependencies

LightKone D6.1(v0.1), December 31, 2017, Page 38

CONTENTS

may be left out of the sequence that is returned. When this happens, it is safe to consider
that these dependencies were dropped from the window that is returned, provided that we
ensure that, for each element that is returned, all dependencies that are more recent than
the oldest element are also returned.

In the get operation we leverage this metadata to do the following: we start by reading
the contents of the list from the service (line 12) and then over this list we remove any
insert whose dependencies are missing. Thus, we only remove inserts whose missing
dependencies have a timestamp above the insert cut timestamp. We then compute a cut
timestamp for the obtained list sl (line 13) that is the highest cut timestamp among all
elements in sl. We use this timestamp to remove from sl any element whose creation
timestamp falls below the computed cut timestamp. Finally, before returning to the client
the elements that remain in sl without the additional metadata (line 18) we update and
garbage collect old entries from the localView (lines 16−17).

Similarly to the previous algorithm, the service might return a number of elements
that is lower than N. In this case, to ensure that we always return N elements, we need
to obtain the missing dependencies using a get operation that returns a single element (if
supported by the service). In our implementation, we avoided this solution because it is
prone to triggering a violation of the API rate limits. Again, an alternative way to address
this is by, after reading the list from the service, merging its contents with those in the
localStore and enforcing an order that is compatible with the timestamp of each element.
However, for simplicity, we omitted this from our algorithms.

Combining multiple session guarantees: Considering the algorithms to enforce
each of the session guarantees discussed above, we can now summarize how to combine
them. In a nutshell, it suffices for our Middleware to, on insert operations, add the meta-
data used by each of the individual algorithms according to the guarantees configured by
the application developer. Correspondingly, upon the execution of a get operation, our
Middleware must perform the transformations over the list obtained from the service (sl)
prescribed by each of the individual algorithms. Furthermore, all metadata added to each
element must also be removed before exposing data to the client application.

Final Remarks This work shows that it is possible to enforce different consistency
properties, in particular session guarantees for third party applications that access online
services through their public APIs. We do so without explicit support from the service
architecture, and without assuming that the service itself provides any of these guaran-
tees. Our solution relies on a thin Middleware layer that executes on the client side, and
intercepts all interactions of the client with the online service. We have presented differ-
ent algorithms to enforce each of the well known session guarantees. Furthermore, our
algorithms follow a simple structure that allows to combine then easily.

We have developed a prototype that we used to evaluate our approach, showing
that we can enforce session guarantees with a modest overhead both in terms of user-
perceived latency and communication with the centralized service. Complete results are
presented in [28] (attached in Appendix).

LightKone D6.1(v0.1), December 31, 2017, Page 39

CONTENTS

2.4 Relation to use cases

(a) Monitoring Guifi.net community network

UPC’s scenario of interest in the heavy edge domain consists on monitoring the Guifi.net
Community Network, acquiring data from its network devices and distributing them in a
replicated storage for further processing (validation, aggregation, averaging, etc.).

The UC2 application from WP2 consists of a large number of monitoring devices
(between a few tens and a hundred), geographically distributed all over the Guifi.net
network (in particular, at the network edges), backed by more powerful devices placed
in local data centers. These devices periodically probe a given list of network nodes and
retrieve a set of data from them, either by direct observation (i.e. performing ping tests to
find the round-trip time or estimate up-time) or as reported by the network devices (e.g.
network traffic through an interface). For any given network node, more than one monitor
may be performing observations at a given time. This redundancy adds fault tolerance
and resilience to the monitoring application (against network partitions, failing monitors,
etc.) but may come at the expense of adding concurrency issues to the application, like
two monitors watching a given node and reporting conflicting or incoherent data.

A multi-probe, distributed and coordinated network monitoring system can provide
much more information than several independent, single-probe ones. For example, a
nodes state flipping on-line/off-line can be an indicator of a hardware failure (e.g. a
defective network interface). However, by observing the phenomenon from different
locations, more precise or realistic information can be obtained (for instance, if the node’s
state flips are only observed at some of the monitors, the phenomenon can be instead a
symptom of a network failure or misconfiguration somewhere else). Smart aggregation of
the whole monitoring data, or parts of it, therefore, can help identifying a wider variety of
network issues or at least locating them with increased precision. However, this operation
must be performed in an efficient way, both in terms of computational resources and data
storage requirements.

Beyond the nodes’ on/off-line states and availability, it is of great interest retrieving
additional data provided by network nodes themselves, such as network traffic, system
load, wireless links quality (for those network devices with radio interfaces), etc. These
data are important for both monitoring, to help on the diverse network operation and
maintenance tasks required, and billing purposes, to charge or compensate each of the
network participants proportionally to the resources they contribute and the ones they
use. Given the economic interest involved in this operation, it is important to ensure the
availability, correctness and completeness of these data, therefore requiring the distribu-
tion and replication of the probes and their cooperation. In this sense, network measure-
ments are to be performed periodically, once per minute by each monitor. It is expected
that each of the measurements available at the different monitors will very similar, but
slightly different to the others (because of the fact that performing a measurement incurrs
in generating traffic through the network, for instance). Therefore, in order to reach a
unique and valid measurement on which to base later decision making, a mechanism to
merge all the measurements is required.

The development of the network monitoring application envisioned heavily depends
on the runtime system and the programming model for edge computing developed in
WP3 and WP4, respectively. In particular, the application depends on an infrastruc-
ture enabled with distributed replicas and persistent data storage that can guarantee the

LightKone D6.1(v0.1), December 31, 2017, Page 40

CONTENTS

correctness of data, even when concurrent write operations take place. These replicas,
additionally, must adapt to the heterogeneity of the nodes they are hosted on, both in
computational and storage resources terms, as in network resources available due to their
different placement. The application also depends on the ability to perform computations
with these data (aggregating, averaging, merging, etc.) without having to care about its
local availability or readiness, but delegating this task to the underlying runtime system.
Furthermore, because of the always growing nature of the collected dataset and taking
into account that as time passes, older data become less interesting than the newly cap-
tured ones, data summarizing algorithms are required to ensure the storage capacity stays
within acceptable limits, while ensuring that coherence and meaningful information are
preserved.

R
a
w

 m
o
n
it

o
ri

n
g
 d

a
ta

API API

API

API

Replication and distribution Replication and distribution

API
R

aw
 &

 p
roce

sse
d

d
ata re

trie
val

Proce
sse

d

d
ata re

tu
rn

al

External requests
Network devices polling

Figure 2.22: Envisioned components of the network monitoring data storage and replica-
tion application.

From the software and applications development point of view, a RESTful API is
the preferred mechanism to interact with the underlying infrastructure providing all the
abovementioned features and requirements. This adds an abstraction layer between the
infrastructure and the application that allows developing and operating them indepen-
dently, or even using two different implementations (e.g. different programming lan-
guages, different versions or shipped features).

Figure 2.22 shows a high-level vision of the application development. On the right
side, on the orange area, are the network monitoring instances that collect diverse types
of data from the network devices. These data are sent as they are to the heavy edge
infrastructure, that manages the distributed and replicated storage transparently to the
application. This infrastructure, actually, is not an intrinsic part of the application, but an
enabler. All the communication with the infrastructure is performed through the API it
provides. On the left, on green, there are generic services or applications that leverage
the infrastructure to retrieve the raw data sent by the monitors in order to process it
and that, when done, may return the processed information back to the infrastructure.

LightKone D6.1(v0.1), December 31, 2017, Page 41

CONTENTS

These generic services or applications may include graphs and stats generation, network
management alerts, billing and accounting, etc.

(b) Building a weakly-consistent datastore index

Cloud storage systems are able to scale to very large amounts of data and provide high
throughput and low latency reads and writes. To achieve this, storage systems typically
expose a simple GET/PUT API that allows access to data only through their primary key.
However, applications often require the ability to retrieve stored objects by performing
queries on attributes other than their primary key. A common approach to address this
is to maintain indexes on these secondary attributes. Geo-distributed, weakly-consistent
storage systems pose varying requirements to the design of secondary indexing systems.
These requirements include supporting efficient search on large volumes of data, enabling
multiple ingest points for updates and queries on different replicas, and incurring low
overhead to the storage system’s performance. Additionally, different use cases have
different requirements and need to optimise different metrics such as storage overhead
of indexes or query response time. It is challenging for a secondary indexing system to
be optimal on all dimensions. Indeed, existing approaches [24, 35, 62] are designed with
specific workloads and storage system characteristics in mind.

Modular secondary indexing [66] is an ongoing work on an approach for expanding
geo-distributed cloud storage systems to support secondary attribute indexing and search.
The key insight is that a modular system architecture can enable indexing systems to be
flexible and adjustable. Different system configurations can make different trade-offs be
optimised for different requirements.

A modular indexing system is assembled from indexing and query processing mod-
ules, called Query Processing Units (QPUs). QPUs operate as services that receive and
process queries. Individual QPUs perform basic indexing and query processing tasks
such as maintaining indexes, caching search results, and federating search over a geo-
distributed system. Different QPU classes exist based on their functionality, while all
exposing a common interface. Indexing systems are built by interconnecting QPUs in
a network, using their common interface. Search queries are processed by being routed
through the QPU network; individual QPUs partially process a given query, decompose
it to sub-queries, forward them through the network, and combine the retrieved results.
Different QPU network configurations can be constructed by the same building blocks,
each optimised for different use cases and requirements.

Advantages An advantage of this approach is that it can enable indexing systems to be
dynamically constructed. QPU networks can be initialised with a simple configuration
and then dynamically adapted to the update and query workloads. Moreover, modular
indexing systems can be used to dynamically adjust the amount computation resources
available for indexing and query processing. Query processing units operate as services
and are not bound to physical machines. This enables systems to collocate multiple
under-utilised QPUs in the same physical machines, or migrate highly loaded QPUs to
new available machines. These mechanisms can be used in order to dynamically ad-
just indexing according to query and update workloads, according to specific application
requirements.

LightKone D6.1(v0.1), December 31, 2017, Page 42

CONTENTS

Modular indexing at the edge Modular secondary indexing could be used for perform-
ing indexing and query processing tasks at the edge. User data stored in cloud storage
systems could be cached in replicas at the edge (user devices), in order to improve la-
tency and allow temporary offline operations. In such systems, index computation could
be performed at edge, using user computational resources. User machines would locally
maintain inverted indexes of data stored in their cache. These per-client partial indexes
would be asynchronously propagated to other replicas and merged to a global index. This
can be achieved by placing some parts of the QPU network at user devices, such as QPUs
that maintain local inverted indexes, and other parts at the data center. Indexing at the
edge can reduce computation load at the core of the system, improve availability in case
of partitioning, and enable sophisticated indexing techniques. Moreover, modular index-
ing could be used in light edge scenarios, such as query processing in sensor networks.
In this case, maintaining indexes is challenging due to storage and power constraints, and
an acquisitional query processing approach can be applied. Our approach can be used in
these cases, as QPUs can process queries by directly scanning or acquiring query results
from the underlying data store (or sensor in this case).

Bounding search result staleness In the described system, partial indexes constructed
at the edge would be propagated to other replicas asynchronously. As a consequence, in-
dexes could temporarily diverge from the state of the data store and result to stale search
results. To address this, we expand our modular indexing framework to enable users to
bound the staleness of search results. This can be achieved using two mechanisms. First,
indexing systems can monitor the amount of divergence between the indexes and the data
store, and dynamically make more computational resources available for index mainte-
nance. A second mechanism can allow users to specify staleness bounds to individual
queries. The system can then synchronously pull data from other replicas and perform
additional computations in order to reach the specified bound, before responding to a
query. Since acquiring less stale search results requires additional computations, applica-
tions can use this mechanism to make a trade-off between query response time and query
result freshness.

Implementation This work is at an early stage. As a next stage of our work, we plan
to implement and evaluate this approach for the described edge use case. We plan to
use AntidoteDB as a reference platform for our implementation. Inter-dc replication and
CRDT support are features that make AntidoteDB useful for our modular indexing imple-
mentation. AntidoteDB’s inter-dc communication mechanism, which is used for inter-dc
replication, can be used for communication among QPUs. Secondary indexes can be
implemented using CRDTs in order to be able to concurrently ingest updates from mul-
tiple replicas without coordination. Furthermore, transactional causal+ consistency can
be used for causally updating multiple secondary indexes when a data object is updated.

(c) A file system on AntidoteDB

Some of today’s most used distributed applications are built atop the long-lived and well-
known abstraction of POSIX file systems. Thus, it is paramount to make sure that this
distributed version of file systems provide reasonable performance while respecting, as
much as possible, the semantics of their non-distributed counterparts. With AntidoteFS

LightKone D6.1(v0.1), December 31, 2017, Page 43

CONTENTS

we take a step in that direction: we leverage the research on CRDTs by layering our file
system on top of AntidoteDB. AntidoteDB offers transactional causal consistency and
a rich toolbox of ready-made CRDTs. The challenge is then twofold: 1. emulating a
traditional, POSIX data model with CRDTs, and 2. respecting the file system invariants
by using the least possible amount of coordination. In the following, we briefly describe
each of these challenges, and summarize the solution we adopted for our reference im-
plementation.9

A POSIX data model with CRDTs A first, naive approach to design a file system data
model using CRDTs would consist in mirroring its file and folder hierarchical structure
using CRDT Maps and Registers. Unfortunately, this approach falls short of being flexi-
ble enough to support data-heavy operations, and it would require full support for nested
CRDTs in AntidoteDB. An improvement over this approach consists in having a CRDT
Map acting as index of all possible file system paths, and pointing to other Maps storing
the data of individual files or folder. This design presents a scalability bottleneck in the
path map. The third approach we identified takes inspiration from the actual inode data
structure in POSIX-compliant file systems. We model each inode as a CRDT Map con-
taining the exact information of POSIX inodes, about ownership, permissions, and the
mutual linking of files to their containing folders. Figure 2.23 shows a first instance of
this design, which we implemented in the AntidoteFS prototype.

inode_xyz

inode

ctime

mtime

atime

rdev

uid

gid

isFile

nlinks

data_xyz

children

hlinks

fle.txt {inode_1, inode_2,...}

p_ino1 folderA

folderB

p_ino2 MyFolderA

CRDT add-wins map

CRDT LWW register

CRDT integer

CRDT boolean

CRDT add-wins set

Figure 2.23: Modeling with CRDTs the inode data structure of POSIX file systems.

Respecting POSIX invariants with minimum coordination Executing concurrent
file system operations in distributed settings can lead to anomalies in the overall struc-
ture of the file system. Namely, an erroneous implementation would allow breaking the
tree-like structure of the file system, by engendering cycles or invalid references. Recent
research suggests that only a subset of file system user operations need coordination in
distributed settings to preserve the POSIX file system invariants. This result comes from
applying the CEC analysis (see Sec. 2.2(b)) to a formal specification of the file system

9https://github.com/SyncFree/antidote-fs

LightKone D6.1(v0.1), December 31, 2017, Page 44

https://github.com/SyncFree/antidote-fs

CONTENTS

structure and its invariants. The main practical outcome for our implementation is that
we will have to enforce two different consistency semantics for the file system opera-
tions: causal consistency for operations that don’t require coordination, and a stronger
consistency semantics for operations that require further coordination to respect the file
system invariants. This is object of ongoing work from the theoretical standpoint — to
formalize the overall semantics of the file system – and from the practical standpoint
— to implement this dual replication protocol within AntidoteFS. This is, essentially, a
direct application of the Just-Right Consistency approach outlined in D4.1.

LightKone D6.1(v0.1), December 31, 2017, Page 45

CONTENTS

3 Papers and publications
The following is the list of peer-reviewed publications where the work towards the De-
liverable has been presented.

• Gonçalo Cabrita and Nuno M. Preguiça. Non-uniform replication. In Proceedings
of OPODIS 2017, 2017.

• Filipe Freitas, João Leitão, Nuno Preguiça, and Rodrigo Rodrigues Gonçalo Cabrita
and Nuno M. Preguiça. Fine-Grained Consistency Upgrades for Online Services.
In Proceedings of Symposium on Reliable Distributed Systems (SRDS’2017), 2017.

• Henrique Moniz, João Leitão, Ricardo J. Dias, Johannes Gehrke, Nuno M. Preguiça,
and Rodrigo Rodrigues. Blotter: Low latency transactions for geo-replicated stor-
age. In Proceedings of the 26th International Conference on World Wide Web,
WWW 2017, Perth, Australia, April 3-7, 2017, pages 263–272, 2017.

• Zhongmiao Li, Peter Van Roy, and Paolo Romano. Exploiting speculation in par-
tially replicated transactional data stores. In Proceedings of the 2017 Symposium
on Cloud Computing, SoCC 2017, Santa Clara, CA, USA, September 24 - 27, 2017,
page 640, 2017.

• Bernardo Ferreira, João Leitão, and Henrique Domingos. Multimodal indexable
encryption for mobile cloud-based applications. In 47th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, DSN 2017, Denver,
CO, USA, June 26-29, 2017, pages 213–224, 2017.

• Peter Zeller. Testing properties of weakly consistent programs with repliss. In
Proceedings of the 3rd International Workshop on Principles and Practice of Con-
sistency for Distributed Data, PaPoC@EuroSys 2017, Belgrade, Serbia, April 23 -
26, 2017, pages 3:1–3:5, 2017.

• Gonçalo Tomás, Peter Zeller, Valter Balegas, Deepthi Devaki Akkoorath, Annette
Bieniusa, João Leitão, and Nuno M. Preguiça. Fmke: a real-world benchmark for
key-value data stores. In Proceedings of the 3rd International Workshop on Prin-
ciples and Practice of Consistency for Distributed Data, PaPoC@EuroSys 2017,
Belgrade, Serbia, April 23 - 26, 2017, pages 7:1–7:4, 2017.

• Gonçalo Marcelino, Valter Balegas, and Carla Ferreira. Bringing hybrid consis-
tency closer to programmers. Im Proceedings of the 3rd International Workshop
on Principles and Practice of Consistency for Distributed Data, PaPoC@EuroSys
2017, Belgrade, Serbia, April 23 - 26, 2017, pages 6:1–6:4, 2017.

LightKone D6.1(v0.1), December 31, 2017, Page 46

CONTENTS

4 Software
The following software artifacts are publicly available:

• AntidoteDB website with documentation http://antidotedb.com

• AntidoteDB code https://github.com/SyncFree/antidote

• Antidote Query Language (AQL) https://github.com/JPDSousa/AQL

• Speculative execution https://github.com/marsleezm/STR

• Repliss tool https://softech.cs.uni-kl.de/repliss/

• CEC tool https://github.com/LightKone/CEC

• File system on AntidoteDB https://github.com/SyncFree/antidote-fs

Access to the code of Repliss and CEC can be obtained by the project coordinator.

LightKone D6.1(v0.1), December 31, 2017, Page 47

http://antidotedb.com
https://github.com/SyncFree/antidote
https://github.com/JPDSousa/AQL
https://github.com/marsleezm/STR
https://softech.cs.uni-kl.de/repliss/
https://github.com/LightKone/CEC
https://github.com/SyncFree/antidote-fs

REFERENCES

References

[1] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto.
Causal memory: definitions, implementation, and programming. Distributed Com-
puting, 9(1):37–49, March 1995.

[2] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and Kaushik Veer-
araghavan. Challenges to Adopting Stronger Consistency at Scale. In HOTOS,
pages 13–13, Berkeley, CA, USA, 2015. USENIX Association.

[3] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhongmiao Li,
Tyler Crain, Annette Bieniusa, Nuno M. Preguiça, and Marc Shapiro. Cure: Strong
semantics meets high availability and low latency. In 36th IEEE International Con-
ference on Distributed Computing Systems, ICDCS 2016, Nara, Japan, June 27-30,
2016, pages 405–414. IEEE Computer Society, 2016.

[4] ANSI. X3. 135-1992, American National Standard for Information Systems-
Database Language-SQL, 1992.

[5] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. Highly available transactions: Virtues and limitations. PVLDB,
7(3):181–192, 2013.

[6] Peter Bailis, Alan Fekete, Joseph M. Hellerstein, Ali Ghodsi, and Ion Stoica. Scal-
able Atomic Visibility with RAMP Transactions. In SIGMOD, pages 27–38, New
York, NY, USA, 2014. ACM.

[7] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Lar-
son, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megas-
tore: Providing scalable, highly available storage for interactive services. In Proc. of
the Conference on Innovative Data system Research (CIDR), pages 223–234, 2011.

[8] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça,
Mahsa Najafzadeh, and Marc Shapiro. Putting consistency back into eventual con-
sistency. In Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 6:1–6:16, New York, NY, USA, 2015. ACM.

[9] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro, Rodrigo
Rodrigues, and Nuno Preguiçca. Extending Eventually Consistent Cloud Databases
for Enforcing Numeric Invariants. In Proc. of the Symposium on Reliable Dis-
tributed Systems (SRDS’15), Set 2015.

[10] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs.
In Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-Paul
de Roever, editors, Formal Methods for Components and Objects: 4th Interna-
tional Symposium, FMCO 2005, pages 364–387, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

LightKone D6.1(v0.1), December 31, 2017, Page 48

REFERENCES

[11] Nalini Moti Belaramani, Michael Dahlin, Lei Gao, Amol Nayate, Arun Venkatara-
mani, Praveen Yalagandula, and Jiandan Zheng. Practi replication. In NSDI, vol-
ume 6, pages 5–5, 2006.

[12] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and
Patrick E. O’Neil. A critique of ANSI SQL isolation levels. CoRR, abs/cs/0701157,
2007.

[13] Philip A. Bernstein and Nathan Goodman. Multiversion Concurrency Control; The-
ory and Algorithms. ACM Trans. Database Syst., 8(4):465–483, December 1983.

[14] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency Con-
trol and Recovery in Database Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1987.

[15] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui
Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkataramani. TAO: Face-
book’s distributed data store for the social graph. In USENIX ATC, pages 49–60,
San Jose, CA, 2013. USENIX.

[16] Gonçalo Cabrita and Nuno Preguiça. Non-uniform replication, 2017.

[17] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yer-
neni. PNUTS: yahoo!’s hosted data serving platform. PVLDB, 1(2):1277–1288,
2008.

[18] James C. Corbett et al. Spanner: Google’s globally-distributed database. In Proc.
of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, pages 251–264, 2012.

[19] Couchbase, December 2015.

[20] Tyler Crain and Marc Shapiro. Designing a causally consistent protocol for geo-
distributed partial replication. In Proceedings of the First Workshop on Principles
and Practice of Consistency for Distributed Data, PaPoC ’15, pages 6:1–6:4, New
York, NY, USA, 2015. ACM.

[21] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Pro-
ceedings of Twenty-first ACM SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[22] Phil Dixon. Shopzilla site redesign: We get what we measure. In Velocity Confer-
ence Talk, 2009.

[23] Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. Clock-si: Snapshot isolation
for partitioned data stores using loosely synchronized clocks. In IEEE 32nd Sym-
posium on Reliable Distributed Systems, SRDS 2013, Braga, Portugal, 1-3 October
2013, pages 173–184. IEEE Computer Society, 2013.

LightKone D6.1(v0.1), December 31, 2017, Page 49

REFERENCES

[24] Robert Escriva, Bernard Wong, and Emin Gün Sirer. Hyperdex: A distributed,
searchable key-value store. In Proceedings of the ACM SIGCOMM 2012 Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’12, pages 25–36, New York, NY, USA, 2012. ACM.

[25] David Ferraiolo and Richard Kuhn. Role-Based Access Control. In In 15th NIST-
NCSC National Computer Security Conference, pages 554–563, 1992.

[26] Bernardo Ferreira, João Leitão, and Henrique Domingos. Multimodal Index-
able Encryption for Mobile Cloud-based Applications. In Proceedings of the
47th IEEE/IFIP International Conference on Dependable Systems and Networks.
DSN’17. IEEE, 2017.

[27] F. Freitas, J. Leit ao, N. Preguiça, and R. Rodrigues. Characterizing the consistency
of online services (practical experience report). In 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 638–
645, June 2016.

[28] F. Freitas, J. Leitão, N. Preguiça, and R. Rodrigues. Fine-Grained Consistency
Upgrades for Online Services. In Proceedings of the 2017 IEEE 36th Symposium
on Reliable Distributed Systems (SRDS), pages 1–10, Sept 2017.

[29] Gonçalo Cabrita. AntidoteDB NuCRDT Module.

[30] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc
Shapiro. ’cause i’m strong enough: Reasoning about consistency choices in dis-
tributed systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’16, pages 371–384, New
York, NY, USA, 2016. ACM.

[31] Goetz Graefe et al. Controlled lock violation. In SIGMOD. ACM, 2013.

[32] Xin Jin, Ram Krishnan, and Ravi Sandhu. A Unified Attribute-Based Access Control
Model Covering DAC, MAC and RBAC, pages 41–55. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

[33] Xin Jin, Ravi Sandhu, and Ram Krishnan. RABAC: Role-Centric Attribute-Based
Access Control, pages 84–96. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[34] Evan Jones et al. Low overhead concurrency control for partitioned main memory
databases. In SIGMOD. ACM, 2010.

[35] Ankita Kejriwal, Arjun Gopalan, Ashish Gupta, Zhihao Jia, Stephen Yang, and John
Ousterhout. SLIK: Scalable low-latency indexes for a key-value store. In 2016
USENIX Annual Technical Conference (USENIX ATC 16), pages 57–70, Denver,
CO, 2016. USENIX Association.

[36] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.
Mdcc: Multi-data center consistency. In Proc. of the 8th ACM European Conference
on Computer Systems, EuroSys ’13, pages 113–126, 2013.

LightKone D6.1(v0.1), December 31, 2017, Page 50

REFERENCES

[37] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[38] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–
169, May 1998.

[39] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. Making Geo-replicated Systems Fast As Possible, Consistent
when Necessary. In Proc. 10th USENIX Conf. on Operating Systems Design and
Implementation, OSDI’12, pages 265–278, Berkeley, CA, USA, 2012. USENIX
Association.

[40] Greg Linden. Make data useful, 2006.

[41] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Don’t settle for eventual: Scalable causal consistency for wide-area storage with
COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 401–416, New York, NY, USA, 2011. ACM.

[42] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In Proc. of the 10th
USENIX Conference on Networked Systems Design and Implementation, NSDI’13,
pages 313–328, 2013.

[43] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr
El Abbadi. Low-latency multi-datacenter databases using replicated commit. Proc.
VLDB Endow., 6(9):661–672, July 2013.

[44] Gonçalo Marcelino, Valter Balegas, and Carla Ferreira. Bringing hybrid consis-
tency closer to programmers. In Proceedings of the 3rd International Workshop
on Principles and Practice of Consistency for Distributed Data, PaPoC ’17, pages
6:1–6:4, New York, NY, USA, 2017. ACM.

[45] MongoDB for GIANT Ideas – MongoDB, December 2015.

[46] Henrique Moniz, João Leitão, Ricardo J. Dias, Johannes Gehrke, Nuno Preguiça,
and Rodrigo Rodrigues. Blotter: Low Latency Transactions for Geo-Replicated
Storage. In Proceedings of the 26th International Conference on World Wide Web,
WWW ’17, pages 263–272, Republic and Canton of Geneva, Switzerland, 2017.
International World Wide Web Conferences Steering Committee.

[47] Sreeja S Nair. Evaluation of the CEC (Correct Eventual Consistency) Tool. Re-
search Report RR-9111, Inria Paris ; LIP6 UMR 7606, UPMC Sorbonne Univer-
sités, France, November 2017.

[48] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[49] Sebastiano Peluso, Pedro Ruivo, Paolo Romano, Francesco Quaglia, and Luı́s E. T.
Rodrigues. GMU: genuine multiversion update-serializable partial data replication.
IEEE Trans. Parallel Distrib. Syst., 27(10):2911–2925, 2016.

LightKone D6.1(v0.1), December 31, 2017, Page 51

REFERENCES

[50] Lin Qiao, Kapil Surlaker, Shirshanka Das, Tom Quiggle, Bob Schulman, Bhaskar
Ghosh, Antony Curtis, Oliver Seeliger, Zhen Zhang, Aditya Auradar, Chris Beaver,
Gregory Brandt, Mihir Gandhi, Kishore Gopalakrishna, Wai Ip, Swaroop Jgadish,
Shi Lu, Alexander Pachev, Aditya Ramesh, Abraham Sebastian, Rupa Shanbhag,
Subbu Subramaniam, Yun Sun, Sajid Topiwala, Cuong Tran, Jemiah Westerman,
and David Zhang. On Brewing Fresh Espresso: Linkedin’s Distributed Data Serving
Platform. In SIGMOD, pages 1135–1146, New York, NY, USA, 2013. ACM.

[51] Riak KV, December 2015.

[52] Paolo Romano et al. On speculative replication of transactional systems. J. Comput.
Syst. Sci., 80(1), February 2014.

[53] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-Monotonic Snap-
shot Isolation: scalable and strong consistency for geo-replicated transactional sys-
tems. In Proc. of the 32nd IEEE Symposium on Reliable Distributed Systems (SRDS
2013), pages 163–172, 2013.

[54] Pierangela Samarati and Sabrina Capitani de Vimercati. Access Control: Policies,
Models, and Mechanisms, pages 137–196. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2001.

[55] Gregory Saunders, Michael Hitchens, and Vijay Varadharajan. An Analysis of Ac-
cess Control Models, pages 281–293. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 1999.

[56] N. Schiper, P. Sutra, and F. Pedone. P-store: Genuine partial replication in wide area
networks. In 2010 29th IEEE Symposium on Reliable Distributed Systems, pages
214–224, Oct 2010.

[57] Fred B. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Comput. Surv., 22(4):299–319, December 1990.

[58] Eric Schurman and Jake Brutlag. The user and business impact of server delays,
additional bytes, and http chunking in web search. In Velocity Web Performance
and Operations Conference, 2009.

[59] Marc Shapiro, Masoud Saeida Ardekani, and Gustavo Petri. Consistency in 3d. In
Josée Desharnais and Radha Jagadeesan, editors, 27th International Conference on
Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada,
volume 59 of LIPIcs, pages 3:1–3:14. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2016.

[60] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-
free replicated data types. In Xavier Défago, Franck Petit, and Vincent Villain, ed-
itors, Stabilization, Safety, and Security of Distributed Systems - 13th International
Symposium, SSS 2011, Grenoble, France, October 10-12, 2011. Proceedings, vol-
ume 6976 of Lecture Notes in Computer Science, pages 386–400. Springer, 2011.

LightKone D6.1(v0.1), December 31, 2017, Page 52

REFERENCES

[61] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional
storage for geo-replicated systems. In Proc. of the 23rd ACM Symposium on Oper-
ating Systems Principles, SOSP ’11, pages 385–400, 2011.

[62] Amy Tai, Michael Wei, Michael J. Freedman, Ittai Abraham, and Dahlia Malkhi.
Replex: A scalable, highly available multi-index data store. In Proceedings of the
2016 USENIX Conference on Usenix Annual Technical Conference, USENIX ATC
’16, pages 337–350, Berkeley, CA, USA, 2016. USENIX Association.

[63] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,
Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level
agreements for cloud storage. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13, pages 309–324, New York, NY,
USA, 2013. ACM.

[64] Alejandro Zlatko Tomsic, Manuel Bravo, and Marc Shapiro. Distributed transac-
tional reads: the strong, the quick, the fresh & the impossible, 2018.

[65] Twitter, inc.

[66] D. Vasilas. Search on Secondary Attributes in Geo-Distributed Systems. ArXiv
e-prints, January 2018.

[67] Mathias Weber and Annette Bieniusa. ACGreGate: A framework for practi-
cal access control for applications using weakly consistent databases. CoRR,
abs/1704.05320, 2018.

[68] Marek Zawirski, Nuno M. Preguiça, Sérgio Duarte, Annette Bieniusa, Valter Bale-
gas, and Marc Shapiro. Write fast, read in the past: Causal consistency for client-
side applications. In Rodger Lea, Sathish Gopalakrishnan, Eli Tilevich, Amy L.
Murphy, and Michael Blackstock, editors, Proceedings of the 16th Annual Middle-
ware Conference, Vancouver, BC, Canada, December 07 - 11, 2015, pages 75–87.
ACM, 2015.

[69] Peter Zeller. Testing properties of weakly consistent programs with repliss. In
Annette Bieniusa and Alexey Gotsman, editors, Proceedings of the 3rd Interna-
tional Workshop on Principles and Practice of Consistency for Distributed Data,
PaPoC@EuroSys 2017, Belgrade, Serbia, April 23 - 26, 2017, pages 3:1–3:5. ACM,
2017.

[70] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos Aguilera, and
Jinyang Li. Transaction chains: Achieving serializability with low latency in geo-
distributed storage systems. In Proc. of the 24th ACM Symposium on Operating
Systems Principles, SOSP, pages 276–291, 2013.

LightKone D6.1(v0.1), December 31, 2017, Page 53

REFERENCES

A Publications

LightKone D6.1(v0.1), December 31, 2017, Page 54

Blotter: Low Latency Transactions
for Geo-Replicated Storage

Henrique Moniz1∗ João Leitão2 Ricardo J. Dias3 Johannes Gehrke4

Nuno Preguiça2 Rodrigo Rodrigues5

1Google 2NOVA LINCS & FCT, Universidade NOVA de Lisboa 3NOVA LINCS & SUSE Linux GmbH
4Microsoft 5INESC-ID & Instituto Superior Técnico, Universidade de Lisboa

ABSTRACT
Most geo-replicated storage systems use weak consistency to avoid
the performance penalty of coordinating replicas in different data
centers. This departure from strong semantics poses problems to
application programmers, who need to address the anomalies en-
abled by weak consistency. In this paper we use a recently pro-
posed isolation level, called Non-Monotonic Snapshot Isolation,
to achieve ACID transactions with low latency. To this end, we
present Blotter, a geo-replicated system that leverages these seman-
tics in the design of a new concurrency control protocol that leaves
a small amount of local state during reads to make commits more
efficient, which is combined with a configuration of Paxos that is
tailored for good performance in wide area settings. Read opera-
tions always run on the local data center, and update transactions
complete in a small number of message steps to a subset of the
replicas. We implemented Blotter as an extension to Cassandra.
Our experimental evaluation shows that Blotter has a small over-
head at the data center scale, and performs better across data cen-
ters when compared with our implementations of the core Spanner
protocol and of Snapshot Isolation on the same codebase.

Keywords
Geo-replication; non-monotonic snapshot isolation; concurrency
control.

1. INTRODUCTION
Many Internet services are backed by geo-replicated storage sys-

tems, in order to keep data close to the end user. This decision is
supported by studies showing the negative impact of latency on user
engagement and, by extension, revenue [15]. While many of these
systems rely on weak consistency for better performance and avail-
ability [10], there is also a class of applications that require support
for strong consistency and transactions. For instance, many appli-
cations within Google are operating on top of Megastore [3], a sys-
tem that provides ACID semantics within the same shard, instead of

∗Work done while the author was at NOVA LINCS.

c©2017 International World Wide Web Conference Committee (IW3C2), published
under Creative Commons CC BY 4.0 License.

ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052603

Bigtable [7], which provides better performance but weaker seman-
tics. This trend also motivated the development of Spanner, which
provides general serializable transactions [9], and sparked other re-
cent efforts in the area of strongly consistent geo-replication [28,
24, 22, 30, 16, 23].

In this paper, we investigate whether it is possible to further cut
the latency penalty for ACID transactions in a geo-replicated sys-
tems, by leveraging a recent isolation proposal called Non-Mono-
tonic Snapshot Isolation (NMSI) [24]. We present the design and
implementation of Blotter, a transactional geo-replicated storage
system that achieves: (1) at most one round-trip across data cen-
ters (assuming a fault-free run and that clients are proxies in the
same data center as one of the replicas), and (2) read operations
that are always served by the local data center. Additionally, when
the client is either co-located with the Paxos leader or when that
leader is in the closest data center to the client, Blotter can operate
in a single round-trip to the closest data center.

To achieve these goals, Blotter combines a novel concurrency
control algorithm that executes at the data center level, with a care-
fully configured Paxos-based replicated state machine that repli-
cates the execution of the concurrency control algorithm across data
centers. Both of these components exploit several characteristics of
NMSI to reduce the amount of coordination between replicas. In
particular, the concurrency control algorithm leverages the fact that
NMSI does not require a total order on the start and commit times
of transactions. Such an ordering would require either synchro-
nized clocks, which are difficult to implement, even using expen-
sive hardware [9], or synchronization between replicas that do not
hold the objects accessed by a transaction [25], which hinders scal-
ability. In addition, NMSI allows us to use separate (concurrent)
Paxos-based state machines for different objects, on which we geo-
replicate the commit operation of the concurrency control protocol.

Compared to a previously proposed NMSI system (Jessy [24]),
instead of assuming partial replication we target full replication,
which is a common deployment scenario [3, 27, 5]. Our layer-
ing of Paxos on top of a concurrency control algorithm is akin to
the Replicated Commit system, which layers Paxos on top of Two-
Phase Locking [23]. However, by leveraging NMSI, we execute
reads exclusively locally, and run parallel instances of Paxos for
different objects, instead of having a single instance per shard.

We implemented Blotter as an extension to Cassandra [17]. Our
evaluation shows that, despite adding a small overhead in a single
data center, Blotter performs much better than Jessy and the proto-
cols used by Spanner, and outperforms in many metrics a replica-
tion protocol that ensures SI [12]. This shows that Blotter can be
a valid choice when several replicas are separated by high latency
links, performance is critical, and the semantic differences between
NMSI and SI are tolerated by the application.

2. SYSTEM MODEL
Blotter is designed to run on top of any distributed storage system

with nodes spread across one or multiple data centers. We assume
that each data object is replicated at all data centers. Within each
data center, data objects are replicated and partitioned across sev-
eral nodes. We make no restrictions on how this intra-data center
replication and partitioning takes place. We assume that nodes may
fail by crashing and recover from such faults. When a node crashes,
it loses its volatile state but all data that was written to stable stor-
age is accessible after recovery. We use an asynchronous system
model, i.e., we do not assume any known bounds on computation
and communication delays. We do not prescribe a fixed bound on
the number of faulty nodes within each data center. As we will
see, our modular design allows for plugging in different replication
protocols that run within each data center. As such, the bounds on
faulty nodes depend on the intra-data center replication protocol.

3. NON-MONOTONIC SI
This section specifies our target isolation level, NMSI, and dis-

cusses the advantages and drawbacks of this choice. The reason
for formalizing NMSI is twofold. First, our specification is sim-
pler than the previous definition [24], thus improving in clarity and
readability. Second, some of our key design choices follow natu-
rally from this specification.

3.1 Snapshot isolation revisited
NMSI is an evolution of Snapshot Isolation (SI). Under SI, a

transaction (logically) executes in a database snapshot taken at the
transaction begin time, reflecting the writes of all transactions that
committed before that instant. Reads and writes execute against
this snapshot, and, at commit time, a transaction can commit if
there are no write-write conflicts with concurrent transactions. (In
this context, two transactions are concurrent if the intervals be-
tween their begin and commit times overlap.)

To define SI more precisely, we state that for any execution of
a system implementing SI, we must be able to create a partial or-
der among the transactions that were executed that (1) explains the
values observed by all transactions, with reads returning the value
written by the latest transaction, according to this partial order, that
wrote to that object; (2) totally orders transactions that write to the
same object; and (3) ensures that transactions see a snapshot that
reflects all operations that committed before the transaction started.
More precisely:

DEFINITION 3.1 (SNAPSHOT ISOLATION (SI)). An imple-
mentation of a transactional system obeys SI if, for any trace of
an execution of that system, there exists a partial order ≺ among
transactions that obeys the following rules, for any pair of transac-
tions ti and tj in that trace:

1. if tj reads a value for object x written by ti then ti ≺ tj∧@tk
writing to x : ti ≺ tk ≺ tj

2. if ti and tj write to the same object x then either ti ≺ tj or
tj ≺ ti.

3. ti ≺ tj if and only if ti commits before tj begins.

This definition captures the anomalies that are used in most defi-
nitions of SI. In particular, it prevents concurrent transactions from
writing to the same object. For example, consider the following
non-SI execution1:

1The notation b, r[xj], w[yl], c and a refers to the following op-
erations of a transaction: begin; read version j of object x; write
version l of object y; commit; and abort.

T1
b r[x0] w[x1] c

T2
b r[x0] w[x1] c

time

In the above example, transactions T1 and T2 write to the same
object x and both commit. Such execution is impossible under SI,
since two transactions that write to the same object must be ordered
according to point number 2 of Definition 3.1, and, for any ordered
pair of transactions, the first one must have committed before the
start of the second transaction, according to point number 3.

The write-skew anomaly is also captured by Definition 3.1, since
concurrent transactions with disjoint write-sets are not ordered. For
example, the following execution meets SI, but is not serializable.

T1
b r[x0] w[y1] c

T2
b r[y0] w[x1] c

time

3.2 Specification of NMSI
NMSI weakens the SI specification in two ways. First, the snap-

shots against which transactions execute do not have to reflect the
writes of a monotonically growing set of transactions. In other
words, it is possible to observe what is called a “long fork” anomaly,
where there can exist two concurrent transactions ta and tb that
commit, writing to different objects, and two other transactions that
start subsequently, where one sees the effects of ta but not tb, and
the other sees the effects of tb but not ta. The next figure exempli-
fies an execution that is admissible under NMSI but not under SI,
since under SI both T3 and T4 would see the effects of both T1 and
T2 because they started after the commit of T1 and T2.

T1
b w[x1] c

T2
b w[y1] c

T3
b r[x1] r[y0] c

T4
b r[x0] r[y1] c

time

This relaxation affects Definition 3.1 by turning the equivalence
in point 3 into an implication, i.e., it becomes:

3’ if ti ≺ tj then ti commits before tj begins.
Second, instead of forcing the snapshot to reflect a subset of the

transactions that committed at the transaction begin time, NMSI
gives the implementation the flexibility to reflect a more convenient
set of transactions in the snapshot, possibly including transactions
that committed after the transaction began. This property, also en-
abled by serializability, is called forward freshness [24].

Going back to Definition 3.1, we can completely remove point 3,
since it is now possible that the snapshot that t sees reflects writes
from transactions that commit after t started, as long as the resulting
snapshot is valid at some moment before the commit of t, i.e.:

DEFINITION 3.2 (NON-MON. SNAPSHOT ISOL. (NMSI)). An
implementation of a transactional system obeys NMSI if, for any
trace of the system execution, there exists a partial order ≺ among
transactions that obeys the following rules, for any pair of transac-
tions ti and tj in the trace:

1. if tj reads a value for object x written by ti then ti ≺ tj∧@tk
writing to x : ti ≺ tk ≺ tj

2. if ti and tj write to the same object x then either ti ≺ tj or
tj ≺ ti.

The example in Figure 1 obeys NMSI but not SI, as the depicted
partial order meets Definition 3.2, but it is not possible to create a
partial order obeying all three requirements of Definition 3.1.

T1
b r[y0] w[x1] c

T2
b r[y0] r[x1] w[x2] c

time

T0 ≺ T1 ≺ T2

Figure 1: Example execution obeying NMSI but not SI.

3.3 What is enabled by NMSI?
NMSI weakens the specification of SI through the two properties

we mentioned previously, which are individually leveraged by the
design of Blotter.

The possibility of having “long forks” allows, in a replicated
setting, for a single (local) replica to make a decision concerning
what data the snapshot should read. This is because, in any highly
available design for the commit protocol, there is necessarily the
possibility of some replicas not seeing a subset of the most recent
commits (since otherwise it would be impossible to provide avail-
ability when a data center is unreachable). As such, in a situation
where snapshots are based on local information, and a replica in
data center DC1 sees the writes of t1 but not t2, and conversely
a replica in DC2 sees the writes of t2 but not t1, then the two lo-
cal snapshots taken at each of these replicas can lead to the “long
fork” anomaly we mentioned, where two transactions proceed in-
dependently. Avoiding this situation would require a serialization
between all transaction begin and commit operations.

In the case of “forward freshness”, this allows for a transaction
to read (in most cases) the most recent version of a given replica,
without having to worry about the instant when the transaction be-
gan. This not only avoids the bookkeeping associated with keeping
track of transaction start times, but also avoids a conflict with trans-
actions that might have committed after the transaction began.

3.4 Discussion: Limitations of NMSI
We analyze in turn the impact of “forward freshness” and “long

forks” on programmability. Forward freshness allows a transaction
x to observe the effects of another transaction y that committed
after x began (in real-time). In this case, the programmer must de-
cide whether this is a violation of the intended application seman-
tics, analogously to deciding whether serializability or strict serial-
izability is the most adequate isolation level for a given application.
Long forks allow two transactions to be executed against different
branches of a forked database state, provided there are no write-
write conflicts. In practice, the main implication of this fact is that
the updates made by users may not become instantly visible across
all replicas. For example, this could cause two users of a social net-
work to each think that they were the first to post a new promotion
on their own wall, since they do not see each other’s posts imme-
diately [28]. Again, the programmer must reason whether this is
admissible. In this case, a mitigating factor is that this anomaly
does not cause the consistency of the database to break. (This is in
contrast with the “write skew” anomaly, which is present in both SI
and NMSI.) Furthermore, in the particular case of our implementa-
tion of NMSI, the occurrence of anomalies is very rare: for a “long
fork” to occur, two transactions must commit in two different data
centers, form a quorum with a third data center, and both complete
before hearing from the other.

Finally, NMSI allows consecutive transactions from the same
client to observe a state that reflects a set of transactions that does
not grow monotonically (when consecutive transactions switch be-
tween two different branches of a long fork). However, in our algo-
rithms this is an unlikely occurrence, since it requires that a client
connects through different data centers in a very short time span.

4. ARCHITECTURE OF BLOTTER
The client library of Blotter exposes an API with the expected

operations: begin a new transaction, read an object given its
identifier, write an object given its identifier and new value, and
commit a transaction, which either returns commit or abort.

The set of protocols that comprise Blotter are organized into
three different components. This not only leads to a modular de-
sign, but also allows us to more clearly define the requirements and
design choices of each component.
Blotter intra-data center replication. At the lowest level, we run
an intra-data center replication protocol, to mask the unreliability
of individual machines within each data center. This level must
provide the protocols above it with the vision of a single logical
copy (per data center) of each data object and associated metadata,
which remains available despite individual node crashes. We do not
prescribe a specific protocol for this layer, since any of the existing
protocols that meet this specification can be used.
Blotter Concurrency Control. (Section 5.) These are the pro-
tocols that ensure transaction atomicity and NMSI isolation in a
single data center, and at the same time are extensible to multiple
data centers by serializing a single protocol step.
Paxos. (Section 6.) This completes the protocol stack by replicat-
ing a subset of the steps of the concurrency control protocol across
data centers. It implements state machine replication [26, 18] using
a careful parameterization of Paxos [19]. However, state machine
replication must be judiciously applied to the concurrency control
protocol, to avoid unnecessary coordination across data centers.

5. SINGLE DATA CENTER PROTOCOL

5.1 Overview
We start by explaining how we derive the concurrency control

protocol from the NMSI requirements.
Partial order ≺. We use a multi-version protocol, i.e., the system
maintains a list of versions for each object. This list is indexed by
an integer version number, which is incremented every time a new
version of the object is created (e.g., for a given object x, over-
writing x0 creates version x1, and so on). In a multi-versioned
storage, the ≺ relation can be defined by the version number that
transactions access, namely if ti writes xm and tj writes xn, then
ti ≺ tj ⇔ m < n; and if ti writes xm and tj reads xn, then
ti ≺ tj ⇔ m ≤ n.
NMSI rule number 1. Rule number 1 of the definition of NMSI
says that, for object x, transaction t must read the value written by
the “latest” transaction that updated x (according to ≺). To illus-
trate this, consider the example run in Figure 2. When a transac-
tion T1 issues its first read operation, it can read the most recently
committed version of the object, say xi written by T0 (leading to
T0 ≺ T). If, subsequently, some other transaction T2 writes xi+1

(T0 ≺ T2), then the protocol must prevent T1 from either reading
or overwriting the values written by T2. Otherwise, we would have
T0 ≺ T2 ≺ T1, and T1 should have read the value for object x
written by T2 (i.e., xi+1) instead of that written by T0 (i.e., xi).
Next, we detail how this is achieved first for reads, then writes, and
then how to enforce the rule transitively.
Reading the latest preceding version. The key to enforcing this re-
quirement is to maintain state associated with each object, stating
the version a running transaction must read, in case such a restric-
tion exists. In the previous example, if T2 writes xi+1, this state
records that T1 must read xi.

To achieve this, our algorithm maintains a per-object dictionary
data structure (x.snapshot), mapping the identifier of a transaction t

b		r[xi]																																								r[yj]																											r[wk-1]	c

b	w[xi+1]	w[yj+1]	c

time

b	r[yj+1]	w[wk]		c

b				r[xi]																																					 r[yj]		w[y]	a

T1

T2

T3

T4

x:	T4→xi

y:	T1,T4→yj w:	T1,T4→wk-1

y:	T2→yj+1

x:	T1→xi

Figure 2: Example run.

to a particular version of x that t either must read or has read from.
Figure 2 depicts the changes to this data structure in the shaded
boxes at the bottom of the figure. When t issues a read for x, if
the dictionary has no information for t, the most recent version is
read and this information is stored in the dictionary. Otherwise, the
specified version is returned.

In the previous example, T1 must record the version it read in the
x.snapshot variable. Subsequently, when the commit of T2 over-
writes that version of x, we are establishing that T2 6≺ T1. As
such, if T2 writes to another object y, creating yj+1, then it must
also force T1 to read the preceding version yj . To do this, when
transaction T2 commits, for every transaction t that read (or must
read) an older version of object x (i.e., the transactions with entries
in the dictionary of x), the protocol will store in the dictionary of
every other object y written by T2 that t must read the previous
version of y (unless an even older version is already prescribed). In
this particular example, y.snapshot would record that T1 and T4
must read version yj , since, at commit time, x.snapshot indicates
that these transactions read xi.
Preventing illegal overwrites. In the previous example, we must
also guarantee that T1 does not overwrite any value written by T2.
To enforce this, it suffices to verify, at the time of the commit of
transaction t, for every object written by t, if T should read its most
recent version. If this is the case, then the transaction can commit,
since no version will be incorrectly overwritten; otherwise, it must
abort. In the example, T4 aborts, since y.snapshot records that
T4 must read yj and a more recent version exists (yj+1). Allowing
T4 to commit and overwrite yj+1 would lead to T2 ≺ T4. This
breaks rule number 1 of NMSI, since it would have required T1 to
read xi+1 written by T2, which did not occur.
Applying the rules transitively. Finally, for enforcing rule number 1
of the definition of NMSI in a transitive manner, it is also necessary
to guarantee the following: if T2 writes xi+1 and yj+1, and sub-
sequently another transaction T3 reads yj+1 and writes wk, then
the protocol must also prevent T1 from reading or overwriting the
values written by T3, otherwise we would have T0 ≺ T2 ≺ T3 ≺
T1, and thus T1 should also have read xi+1.

To achieve this, when transaction T3 (which read yj+1) com-
mits, for every transaction t that must read version yl with l < j+1
(i.e., the transactions that had entries in the dictionary of y when to
read y), the protocol will store in the dictionary of every other ob-
ject w written by T3 that t must read the previous version of w
(if an older version is not already specified). In the example, since
the state for y.snapshot after T2 commits specifies that T1 must
read version yj , then, when T3 commits, w.snapshot is updated
to state that T1 and T4 must read version wk−1.
NMSI rule number 2. Rule number 2 of the NMSI definition says
that any pair of transactions that write the same object x must have
a relative order, i.e., either ti ≺ tj or tj ≺ ti. This order is defined
by the version number of x created by each transaction.

Therefore, it remains to ensure that this is a partial order (i.e., no
cycles). A cycle could appear if two or more transactions concur-
rently committed a chain of objects in a different order, e.g., if tm
wrote both xi and yj+1 and tn wrote both xi+1 and yj . To prevent
this, it suffices to use a two-phase commit protocol where, for each
object, a single accepted prepare can be outstanding at any time.
Waiving SI rule number 3. The fact that NMSI does not have to
enforce rule number 3 (which is present only in SI) already allows
for some performance gains in the single data center protocol, even
though other, more impactful advantages will only become clear
when we extend the protocol to multiple data centers in Section 6.
In particular, if we consider the example in Figure 1, transaction T2

is bound to abort in SI after it read version 0 of y concurrently with
T1 creating version 1 of x. This is true of any concurrency control
scheme that implements SI because, when T2 subsequently reads
x, SI requires it to return the version corresponding to the snapshot
taken when the transaction started (i.e., x0), and the subsequent
write to x would generate a write-write conflict. In contrast, in
our NMSI design, the commit of T1 records in x.snapshot that T2

should read version 1, which avoids this situation.

5.2 Protocol design
The single data center concurrency control module consists of

the following three components: the client library and the transac-
tion managers (TM), which are non-replicated components that act
as a front end providing the system interface and implementing the
client side of the transaction processing protocol, respectively; and
the data managers (DM), which are the replicated components that
manage the information associated with data objects.

Client Library. This provides the interface of Blotter, namely
begin, read, write, and commit. The begin, and write operations
are local to the client. Read operations are relayed to the TM, who
returns the values and metadata for the objects that were read. The
written values are buffered by the client library and only sent to the
TM at commit time, together with the accumulated metadata for the
objects that were read. This metadata is used to set the versions that
running transactions must access, as explained next.

Transaction Manager (TM). The TM handles the two opera-
tions received from the clients: read and commit. For reads, it
merely relays the request and reply to or from the Data Manager
(DM) responsible for the object being read. Upon receiving a com-
mit request, the TM acts as a coordinator of a two-phase commit
(2PC) protocol to enforce the all-or-nothing atomicity property.
The first phase sends a dm-prewrite-request, with the newly writ-
ten values, to all DMs storing written objects. Each DM verifies
if the write complies with NMSI. If none of the DMs identifies a
violation, the TM sends the DMs a dm-write message containing
the metadata with snapshot information aggregated from all replies
to the first phase; otherwise it sends a dm-abort.

Data Manager (DM). The core of the concurrency control logic
is implemented by the DM. Algorithm 1 describes its handlers for
the three types of requests.

(i) Read operation. The handler for a read of object x by trans-
action T returns either the version of x stored in x.snapshot for T ,
if the information is present, or the most recent version and then
sets x.snapshot[T] to that version, so that a subsequent read to the
same variable reads from the same snapshot (and also, as we will
see, for propagating snapshot information to enforce NMSI).

Before returning, the read operation must wait in case a con-
current transaction is trying to commit a new value for x (a stan-
dard 2PC check, which is done by inspecting x.prewrite). However,
blocking is not needed when the snapshot variable forces a transac-
tion to read a prior version.

Algorithm 1: Single data center DM protocols
// read operation

1 upon 〈 dm-read, T, x 〉 from TM do
2 processRead 〈 T, x, TM 〉;
// prewrite operation

3 upon 〈 dm-prewrite, T, x, value 〉 from TM do
4 if x.prewrite 6= ⊥ then

// another prewrite is pending
5 x.pending← x.pending ∪ {(T, x, value, TM)};
6 else
7 processPrewrite 〈 T, x, value, TM 〉;

// write operation
8 upon 〈 dm-write, T, x, agg-startd-before 〉 from TM do
9 for each T’ in agg-startd-before do

10 if T’ not in x.snapshot then
11 x.snapshot[T’]← x.last;

12 x.last← x.last + 1;
13 x.value[x.last]← x.nextvalue;
14 finishWrite 〈 T, x, TM 〉;

// abort operation
15 upon 〈 dm-abort, T, x 〉 from TM do
16 finishWrite 〈 T, x, TM 〉;

// process read operation
17 processRead 〈 T, x, TM 〉
18 if T /∈ x.snapshot then
19 if x.prewrite 6= ⊥ then
20 x.buffered← x.buffered ∪ {(T, TM)};
21 return
22 else
23 x.snapshot[T]← x.last;

24 version← x.snapshot[T];
25 value← x.value[version];
26 send 〈 read-response, T, value, {T ′|x.snapshot[T ′] < version} 〉 to

TM;
// process dm-prewrite request

27 processPrewrite 〈 T, x, value, TM 〉
28 if x.snapshot[T] 6=⊥ ∧ x.snapshot[T] < x.last then

// there is a write-write conflict
29 send 〈 prewrite-response, reject,⊥ 〉 to TM;
30 else
31 x.prewrite← T;
32 x.nextvalue← value;
33 send 〈 prewrite-response, accept, {T ′|T ′ ∈ x.snapshot} 〉 to TM;

// clean prewrite information and serve buffered
reads and pending prewrites

34 finishWrite 〈 T, x, TM〉
35 if x.prewrite = T then
36 x.nextvalue←⊥; x.prewrite←⊥;

37 for each (T, TM) in x.buffered do
38 processRead 〈 T, x, TM 〉;
39 if x.pending 6=⊥ then
40 (T, x, value, TM)← removeFirst(x.pending);
41 processPrewrite 〈 T, x, value, TM 〉;

Finally, the metadata returned to the TM are the identifiers of all
transactions present in x.snapshot that must read from a version
prior to the one returned, i.e., all T ′ that must obey T 6≺ T ′ due to
T reading x. This information is aggregated by the client library,
and propagated to DMs in phase 2 of the commit, to ensure that
those T ′ read a state prior to T . As explained in Section 5.1, this
enforces point 1 of the NMSI definition transitively.

(ii) Prewrite operation. This first phase for the commit of T
has two goals: detect write-write conflicts, and collect informa-
tion about concurrent transactions, which is subsequently added to
their snapshot variables. After checking (and if needed blocking)
if there is a concurrent prewrite for an object written by T , the DM
detects write-write conflicts by checking if T has to read an older
version for any written object x (i.e., by checking x.snapshot[T]).

If so, then T is writing to an object that was written by a concurrent
transaction (i.e., a write-write conflict would violate Rule 1 of the
NMSI Definition), and a reject is replied. Otherwise, prewrite and
nextvalue are set, in order to block concurrent accesses to x, and an
accept is returned, including as metadata the identifiers of all trans-
actions in x.snapshot. These are the transactions that cannot be
serialized after T according to ≺, since T is overwriting data they
either read or must read. This information is aggregated by the TM
and used in the next phase.

(iii) Write and abort operations. If any of the participating
DMs detects a write-write conflict, then the TM sends abort mes-
sages to all DMs involved in T , who then remove T from prewrite
and nextvalue, thus unblocking pending transactions. Otherwise,
the TM sends a write to all DMs in T , containing the aggregated
metadata, comprising the set of identifiers of all transactions present
in the snapshot variable for any object read or written by T . Upon
receiving a write request, the DM responsible for x will first set
x.snapshot[T ′] to the current version of x, for any transaction T ′

in the previous set, thus enforcing that T 6≺ T ′. After this step, the
DM will create a new version of x by incrementing its version num-
ber, and the new version is made visible to other transactions by
updating x.last and x.value[x.last]. Finally, reads pending on that
transaction commit are executed, followed by pending prewrites.

5.3 Garbage Collection
The per-object x.snapshot data structure needs a garbage col-

lection mechanism to prevent the number of entries from growing
without bound. This is particularly important since these entries are
propagated from one data object to another at the time of commit.

An entry x.snapshot[T] guarantees that T reads a version of x
that will not break NMSI rules and also enables the detection of
write-write conflicts between T and other committed transactions
when T attempts to commit. This means that an entry for T in
the snapshot data structure only needs to be maintained while T
is executing. When T terminates, the entry should be removed as
soon as possible to avoid a needless propagation to the snapshot
structure of other objects. We take advantage of this observation to
implement a simple garbage collection scheme, where each trans-
action T is created with a time to live (TTL), which reflects the
maximum time the transaction is allowed to run. After the TTL of
T expires, any entries for T are automatically garbage collected.
We analyze the efficiency of this mechanism in Section 7.5.

This mechanism also enables us to garbage collect old versions
of data objects: any version of an object x, other than the most re-
cent one, with no entries in the x.snapshot data structure pointing
to it can be safely garbage collected.

6. GEO-REPLICATION
Blotter implements geo-replication, with each object replicated

in all data centers, using Paxos-based state machine replication [19,
26]. In this model, all replicas execute a set of client-issued com-
mands according to a total order, thus following the same sequence
of states and producing the same sequence of responses. We view
each data center as a state machine replica. The state is com-
posed by the database (i.e., all data objects and associated meta-
data), and the state machine commands are the tm-read and the
tm-commit of the TM-DM interface.

Despite being correct, this approach has three drawbacks: (1)
read operations in our concurrency control protocol are state ma-
chine commands that mutate the state, thus requiring an expensive
consensus round; (2) the total order of the state machine precludes
the concurrent execution of two commits, even for transactions that
do not conflict; and (3) each Paxos-based state machine command

requires several cross-data center message delays (depending on
the variant of Paxos used). We next refine our design by addressing
each of these concerns, including a discussion on deadlocks.
(1) Local read operations. Read operations modify the snapshot
variable state and need to be executed in the state machine, incur-
ring in the cross-data center latency of the replication protocol.

To avoid this overhead, we propose to remove the contents of
the snapshot variable from the state machine. The replicas still
maintain their view of the snapshot variable, but the information
is independently maintained by each replica. This is feasible under
NMSI since the snapshot information is used for only two purposes.

The first one is to determine whether write-write conflicts exist.
This happens if, at commit time of transaction T , for some modi-
fied object x, the snapshot information for T is not the most recent
version of x. Since the snapshot information is now updated out-
side of the state machine, only the replica in the data center where
T is initiated records the information for snapshot[T]. To allow all
data centers to deterministically check for write-write conflicts, we
include, as a parameter of the commit state machine command, the
snapshot information present at the data center where T executed,
for each object x modified by T . While this works seamlessly for
objects that are both read and written by T , this does not handle the
case of a blind write to x, since x.snapshot[T] was not defined in
this case. This can be handled by forcing blind writes to perform
an artificial read to define x.snapshot[T], right before T commits.

The second use of the information in the snapshot data structure
is during transaction execution (i.e., before the commit) to deter-
mine which version of an object should be observed by a transac-
tion T , so that a consistent snapshot for T is read. However, this
is a local use of the information, and therefore it does not have to
be maintained by the state machine. (This forces clients to restart
ongoing transactions when failing over to another data center.)

By having consistent reads outside the state machine, read-only
transactions can run locally in the data center where the TM runs.
Connection to NMSI. These modifications are possible because,
unlike SI, NMSI allows for independence between the state re-
flected by transactions and the real-time instant when transactions
begin and commit. Otherwise, the local snapshot variable might
not be up-to-date as other transactions commit (see point (3)).
(2) Concurrent execution of database operations. Enforcing a
state machine total order on database operations and executing them
serially ensures consistency, but defeats the purpose of concurrency
control, which is to enable transactions to execute concurrently.

To address this, we observe that the partial order required by the
NMSI definition can be built by serializing the dm-prewrite opera-
tion on a per-object basis, instead of serializing tm-commits across
all objects. This is because a per-object serialization of the first
phase of the two-phase commit suffices to ensure that the trans-
action outcome is the same at all data centers and that the state
transformation of each object involved in the tm-commit operation
is also the same at all replicas, and therefore the database evolves
consistently and obeying NMSI across all data centers.

As such, instead of having one large state machine whose state is
defined by the entire database, we can have one state machine per
object, with the state being the object (including its metadata), and
supporting only the dm-prewrite operation. The data center where
the transaction executes is the one to issue the dm-prewrites for the
objects involved in the transaction, and, since the outcome is the
same at all data centers, each data center can subsequently commit
or abort the transaction independently, without coordination.
Connection to NMSI. This important optimization is made possi-
ble by the NMSI semantics, namely the possibility of having long
forks. The intersection property between read and write quorums is

only required for quorums of the same instance. As such, a commit
to an object x may not be reflected in the state read by the Paxos
instance for object y and vice-versa, thus leading to a long fork.
Deadlock Resolution. As presented so far, Blotter can incur in
deadlocks when more than one transaction writes to the same set of
objects, and the Paxos instances for these objects serialize the trans-
actions in a different order. The possibility of deadlock is common
across any two-phase commit-based system [28, 9, 23], and, since
it has been addressed in the literature, we consider it orthogonal
to our contribution. In particular, due to the use of Blotter Paxos,
deadlocks are replicated across different data centers, and there-
fore any deterministic deadlock resolution scheme, such as edge-
chasing [11], can be employed.
(3) Paxos with a single cross-data center round-trip. We ad-
justed the configuration of Paxos to reduce the cross data center
steps to a single round-trip (from the client of the protocol, i.e., the
TM) for update transactions. We leverage two techniques.

The first is to use a variant called Multi-Paxos [19], which al-
lows, in the normal case, for command execution to proceed as fol-
lows: client (i.e., TM) to Paxos leader; Paxos leader to all replicas;
all replicas to client. The second technique leverages the observa-
tion that data center outages are rare, and given that we are using
a lower layer of replication protocols to make each Paxos replica
fault-tolerant, it is sensible to configure Paxos to only tolerate one
unplanned outage of a data center. In fact, this configuration is
common in existing deployed systems [2, 9]. (Planned outages are
handled by reconfiguring the Paxos membership [20].) Given this
observation, we can parameterize Paxos to use read quorums of
N−1 and write quorums of 2 processes (where N is the number of
data centers). This allows the following optimization: upon receiv-
ing an operation from the leader, a replica knows that the operation
is decided, since it gathered a quorum of two processes between
itself and the leader. This allows a TM to commit a transaction
incurring in a single cross-data center round trip for each object,
irrespectively of the TM being co-located with the Paxos leaders.
Connection to NMSI. This optimization could be applied to other
systems that use Paxos in the context of replicated transactions,
although, as stated previously, a design that uses different repli-
cas groups for different objects would require quorum intersection
across replica groups in SI but not in NMSI. Such quorum intersec-
tion would be possible if all groups used the same quorums (e.g.,
majorities), whereas in NMSI we can use asymmetric quorums and
optimize the location of the Paxos leader per-object.

7. EVALUATION
We evaluated Blotter on EC2, by comparing it to Cassandra,

an implementation of Spanner’s Two-Phase Locking (2PL), a full
replication SI protocol [12], and Jessy.

Our evaluation uses various benchmarks and workloads, namely:
microbenchmarks for latency and throughput (§7.2); an adaptation
of the RUBiS benchmark to key-value stores (§7.3); and a social
networking workload (§7.4). We also evaluate the garbage collec-
tion mechanism (§7.5); and conduct a separate comparison to Jessy,
the other system that offers NMSI (§7.6).

7.1 Experimental Setup
We conducted the experiments on EC2 using data centers from

three availability regions: Ireland (EU), Virginia (US-E), and Cal-
ifornia (US-W). The following table shows the roundtrip latencies
between these data centers.

Ireland Virginia
Virginia 97 -

California 167 79

A server cluster composed of four virtual machines was setup in
each data center. Four additional virtual machines per data center
were used as clients. Each virtual machine is an extra large instance
with a 64-bit processor architecture, 4 virtual cores, and 15 GB of
RAM. Within each data center, keys are mapped to servers using
consistent hashing.

We compared the following geo-replicated systems. (In all sys-
tems, centralized components, namely lock servers for 2PL and
Paxos leaders, ran in Ireland.)
Blotter. We implemented Blotter on top of Cassandra. In particu-
lar, we extended Cassandra and its Thrift API with the TM and DM
logic of Blotter and implemented a client library supporting the be-
gin, read, write, commit interface. For intra-data center replication,
Blotter uses Cassandra replication with N = 2 replicas, with write
quorums of two replicas and read quorums of one replica.
Cassandra. Cassandra is a popular open source NoSQL key-value
store [17]. Cassandra does not support transactions, and the consis-
tency of individual operations is defined by the clients, who specify
the number of replicas that are contacted in the foreground, before
the operation returns. We used two different configurations, both
with N = 3 replicas (one per data center): (1) the local quorum
configuration uses read and write quorums of a single replica, thus
providing weak consistency; and (2) the ’each’ quorum configura-
tion, where a read operation completes after contacting exactly one
replica (at the local data center), and a write operation completes af-
ter contacting all three replicas, thus providing strong consistency.
Although Cassandra does not support transactions, we compare it
against the other systems by clustering its operations into logical
groups (which we simply call transactions), each containing zero
or more read operations and optionally terminated by an aggregated
set of write operations.
Spanner’s 2PL. We chose Spanner [9] as one of the comparison
points because of its relevance, since it is a production system de-
ployed at Google. Update transactions in Spanner are an implemen-
tation of the two-phase locking/two-phase commit (2PL/2PC) tech-
nique for serializable transactions [4], on top of a Paxos-replicated
log. By further leveraging the TrueTime API, Spanner also pro-
vides external consistency, or linearizability. (Conversely, Blotter
uses Paxos to replicate the atomic commit operation across data
centers instead of the log.) We extended Cassandra with transac-
tions using the 2PL/2PC approach of Spanner, with a centralized
lock server, on top of a Paxos-replicated log. We left out True-
Time, thus providing serializability, and favoring the performance
of our implementation of Spanner’s 2PL/2PC.
Generalized SI. Generalized SI (GSI) [12] is an extension of SI
suitable for replicated databases. GSI allows transactions to read
from older snapshots, whereas SI requires transactions to read from
the most recent snapshot. The GSI algorithm assumes a full repli-
cation scenario where each replica contains the full copy of the
database. Read operations can read from any replica, and commit
operations must be serialized either using either a centralized trans-
action certifier or a state-machine approach. (We reused the Paxos
implementation of Blotter.) We implemented GSI as an extension
of Cassandra, with a replica of each data item per data center, and
therefore local reads do not contact remote data centers.

7.2 Microbenchmarks
We measured latency and throughput under a simple workload,

which parameterizes the number of read and write operations in
each transaction. For this set of experiments, we loaded the database
with 10 million random keys and random 256-byte values.
Latency. We first studied how the operations that comprise a trans-
action affect its latency. In this experiment, each transaction was

composed of a single read operation and by either one or five write
operations applied at commit time. For each run, the load consisted
of a single client machine with a single thread executing 10,000
transactions serially. We used both a single data center in Ireland,
and a configuration using all data centers.

The results in Table 1 show the latency (median and 99th per-
centile) for individual read and commit operations with both one
and five write operations (W=1 and W=5).

The single data center configuration evaluates the protocol over-
heads when the latency between nodes is small. The results show
that reads in Blotter incur a slight overhead with respect to the base-
line Cassandra implementation (less than half a millisecond) due
to the extra steps of writing snapshot information and acquiring
locks. For commits, the differences are more pronounced, due the
fact that Cassandra only requires two message exchanges, while
Blotter, GSI, and 2PL require four because of 2PC.

For the multi-data center configuration, the previous overheads
are dwarfed by the inter-data center latency. The Cassandra local
quorum configuration is the only one that does not require cross-
data center communication, and thus performs similarly in both
configurations. Compared to the remaining systems, Blotter and
GSI perform better because they only require a response from a
single remote data center, in most cases the closest one. Cassandra
(’each’ quorum) requires replies from all data centers, so the com-
mit latency reflects the latency between the client and the farthest
data center. The latency of 2PL is higher than the other protocols
because it requires more cross-data center round-trips for commits,
and it also has to contact the data center responsible for the read
and write locks for both types of transactions.

The results also show that GSI has a slightly lower latency than
Blotter, which is likely due to the performance variance of the vir-
tualized, wide-area environment.
Throughput. For measuring throughput, we used transactions with
different combinations of read and write operations, including read-
only, write-only, and mixed transactions. Each transaction executes
R read operations serially followed by a commit with W write op-
erations. We varied the number of concurrent client threads from
12 to 360, equally split across all data centers, where each client
thread executes its transactions in a serial order. Figure 3 presents
the maximum observed throughput for a configuration spanning all
three data centers.

For read-only workloads, 2PL has a much lower throughput due
to the fact that is does not necessarily read from the local data cen-
ter. The overhead due to the extra processing in Blotter compared
to Cassandra is also visible, particularly for R=5. For the write-
only and mixed workloads, and focusing on the systems that require
cross-data center coordination, Blotter has the highest throughput
due to its more efficient cross-data center communication pattern
and, compared to GSI, because of the increased parallelism, which,
as we explained, is fundamentally tied to the use of NMSI.

7.3 Auction Site
We also evaluated Blotter using the RUBiS benchmark, which

models an auction site similar to eBay. We ported the benchmark
from using a relational database as the storage backend to using
a key-value store. Each row of the relational database is stored
with a key formed by the name of the table and the value of the
primary key. We additionally store data for supporting efficient
queries (namely indexes and foreign keys).

The workload consists of a mix with 85% of the interactions
containing only read-only transactions, and 15% of the interactions
containing read-write transactions. We initially load the key-value
store with 10,000 users, 1,000 old items, and 32,667 active items.

Single Data Center Multi Data Center
System Read Latency Commit Latency Read Latency Commit Latency

W = 1 W = 5 W = 1 W = 5
Cassandra (local quorum) 0.61 / 4.2 0.62 / 3.3 0.62 / 3.3 1.02 / 6.7 3.41 / 6.3 3.07 / 6.0
Cassandra (’each’ quorum) 0.65 / 4.2 1.55 / 3.3 1.51 / 3.3 1.12 / 6.0 180.75 / 189.7 171.49 / 181.7
Blotter 0.98 / 5.0 1.46 / 4.3 1.45 / 4.3 1.60 / 7.5 85.47 / 150.0 87.09 / 128.7
GSI 0.71 / 4.3 1.75 / 5.3 1.76 / 5.3 1.21 / 79.0 79.21 / 82.7 78.89 / 82.3
2PL 0.62 / 4.0 0.61 / 4.0 0.60 / 4.0 1.72 (local), 247.32 / 321.7 246.17 / 310.0

85.19 (remote) / 150.7

Table 1: Latency of microbenchmarks in milliseconds (median / 99th percentile)

R=1
W=0

R=5
W=0

Read-only workloads

0

5000

10000

15000

20000

25000

30000

Th
ro

ug
hp

ut
 (t

ra
ns

ac
tio

ns
/s

ec
on

d)

R=0
W=1

R=0
W=5

Write-only workloads

0

1000

2000

3000

4000

5000

6000

7000

8000

R=1
W=1

R=1
W=5

R=5
W=1

R=5
W=5

Mixed workloads

0

1000

2000

3000

4000

5000

6000

7000
Cassandra (local quorum)
Cassandra (each)
Blotter
GSI
2PL

R = 0
W = 1

R = 0
W = 5

R = 1
W = 0

R = 5
W = 0

R = 1
W = 1

R = 1
W = 5

R = 5
W = 1

R = 5
W = 5

Figure 3: Throughput of multi-data center microbenchmarks

Figure 4 depicts our experimental results for the RUBiS work-
load. The results show that, consistently with the microbenchmark
results, Blotter outperforms 2PL in terms of throughput for both
read-only and read-write operations, since the design of Blotter
minimizes the need for communication and coordination across
data centers.

7.4 Microblogging
This experiment evaluates a mockup implementation of Twit-

ter, supporting three different user interactions, modeled after [30]:
Post-tweet appends a tweet to the wall of a user and its followers,
which results in a transaction with many reads and writes. Follow-
user appends new information about the set of followers to the pro-
files of the follower and the followee, which results in a transaction
with two reads and two writes. Finally, read-timeline reads the wall
of the user, resulting in a single read operation.

The workload consists of the following mix of interactions: 85%
read-timeline, 10% post-tweet, and 5% follow-user. The database
contains 100,000 users and each has an average of 6 followers. For
each system, we varied the number of client threads from 120 to
720 and measured the maximum observed throughput.

The results in Figure 5 show a similar pattern to the through-
put microbenchmarks. For the read-timeline (read-only) opera-
tion, Cassandra achieves the best throughput (60K tx/s), followed
by Blotter (50K tx/s), and 2PL (10K tx/s). For the post-tweet
and follow-user operations, which contain updates, Blotter has the
highest throughput, followed by Cassandra, and then 2PL.

7.5 Garbage Collection
The garbage collection mechanism of Blotter is required to pre-

vent the number of entries in the snapshot data structure of objects
from growing without bound, which is important since this impacts
the protocol message size.

To analyze the overhead of garbage collection, we deploy Blot-
ter with one server and one client, and set the TTL to 1 second.

The client executes a workload parameterized by (1) the number of
objects in the database, and (2) the number of read and write op-
erations per transaction. Both directly affect the contention and,
consequently, the rate of propagation of snapshot entries in the
database. As a metric of the efficiency of the garbage collection
mechanism we use the number of snapshot entries returned with
each read operation, as this reflects the size of the snapshot data
structure at the time of the operation.

Figure 6 shows the average number of snapshot entries per read
as a function of how far into the trace we are, for two database
configurations: with 1000 objects (less contention) and 100 objects
(more contention). For every tested combination of parameters, the
GC mechanism stabilizes the size of the snapshot data structures to
a very reasonable level of at most a few tens of entries. We also
observed a peak in the size of the state that is returned, which hap-
pens because the high contention eventually saturates the system,
thus increasing the latency of the transactions and lowering the rate
at which snapshot entries are propagated.

7.6 Comparison to Jessy
We compared Blotter to the Jessy implementation of NMSI pro-

vided by its authors [25]. Jessy was the first system to explore
NMSI as the isolation level for transactions in a geo-replicated set-
ting. In contrast to Blotter, it focuses on partial replication settings
(i.e., a given data center may not replicate the entire data set). For
building consistent snapshots, Jessy uses a data structure called de-
pendence vector, which contains either one entry per data item or
per set of data items, depending on the configuration. This data
structure is stored with data objects in the database, and must be
read by clients and propagated within write operations. The propa-
gation of transactions across machines uses total order multicast.

We first ran experiments in a single data center (EC2 in Ire-
land), where both systems were deployed across four servers, us-
ing both dependence vector configurations above. In these exper-
iments we set a replication factor of two and a total of 50, 000

Figure 4: Average user interaction
throughput for RUBiS

Figure 5: Microblogging throughput
Figure 6: Garbage collection

keys. Each object in this deployment has a size of 256 Bytes. We
used YCSB [8] to execute a total of 4, 000 transactions (evenly dis-
tributed across 20 client threads). Both configurations of Jessy ex-
hibited a throughput below 100 transactions per second, while the
throughput of Blotter was above 300 transactions per second. Even
though the performance numbers are not directly comparable, since
the code bases are very different, there are several factors that neg-
atively affect the performance of Jessy. In particular, the size of its
dependence vectors when using one entry per object grows to an
average size of 200 entries only a few seconds into the experiment,
which leads to significant memory and communication overheads.
In turn, the other configuration of Jessy uses dependence vectors
with a constant size of two entries. However, this alternative leads
to a significant number of spurious conflicts.

We also deployed Jessy with geo-replication. However, both
configurations of Jessy had very low throughput, which is a result
using of total order multicast across data centers.

8. RELATED WORK
The closest related proposals are systems that also aim at sup-

porting a non-monotonic version of snapshot isolation transactions
in a geo-replicated setting. Jessy [25] was the first system to ex-
plore NMSI as the isolation level for transactions in a geo-replicated
setting, where objects can be partitioned across different sites. For
building consistent snapshots, Jessy uses a data structure called de-
pendence vector, with one entry either per object or per set of ob-
jects. The former case has scalability issues, showed by our exper-
iments, since the vector is O(n), where n is the number of objects
in the database, whereas in the latter case the algorithm restricts
concurrency, leading to spurious conflicts. By focusing on the case
where data is fully replicated, Blotter provides consistent snapshots
with no spurious conflicts and with an overhead that is linear in the
number of active transactions in the local data center.

Walter [28] also uses a non-monotonic variant of SI called par-
allel snapshot isolation (PSI). While both PSI and NMSI allow
long forks, in PSI the snapshot is defined at transaction begin time,
based on the state of the replica in which the transaction executes.
Ardekani et. al. [24] have shown that this leads to a higher abort
rate and results in lower performance when compared to NSMI.

There are also systems that guarantee isolation levels stronger
than NMSI in geo-replicated scenarios. The replicated commit pro-
tocol [23] provides serializable transactions by layering Paxos on
top of two-phase locking and two-phase commit. However, in that
protocol, not only commit but also read operations require contact-
ing all data centers and receiving replies from a majority of replicas.
In Blotter, we similarly layer Paxos on top of a concurrency con-
trol protocol. But, in contrast, Blotter adopts the NMSI isolation
level and uses novel concurrency control protocols that allow it to
perform consistent reads locally, within the data center where the

transaction was started. As a consequence, transactions in Blotter
only require a single cross data center round-trip at commit time.

Spanner [9] and Scatter [13] provide strong ACID transactional
guarantees with geo-replication, but, in contrast to Blotter, their
architecture layers two-phase commit and two-phase locking on top
of a Paxos-replicated log. Reversing the order of these two layers
leads to more cross data center round-trips and a corresponding
drop in performance, as shown by other authors [23].

TAPIR [29] follows the same principle as Blotter of having a
lower layer of weakly consistent replication, on top of which trans-
actions are built. However, TAPIR aims for stronger semantics,
namely strict serializability. The resulting protocol requires loosely
synchronized clocks at the clients (for performance, not correct-
ness), and incurs in a single round-trip to all replicas in all shards
that are part of the transaction. In contrast, we offer NMSI with-
out any clock synchronization and with a single round-trip to the
closest (or the master) data center.

Other systems also support transactions in a geo-replicated de-
ployment, but provide weaker guarantees than Blotter. MDCC [16]
provides read committed isolation without lost updates by combin-
ing different variants of Paxos [14]. In contrast to MDCC, Blotter
offers stronger semantics, but the ideas of MDCC are complemen-
tary since Blotter could make use of a similar approach to further
improve the geo-replicated commit.

Some systems like Megastore [3] or SQL Azure [6] provide ACID
properties within a partition of data and looser consistency across
partitions. In contrast, transactions in Blotter may span any set of
objects. Other systems support more limited forms of transactions
than Blotter. Eiger [22] supports read-only and write-only transac-
tions. COPS [21] and ChainReaction [1] support read-only trans-
actions that offer causality, but no isolation. In contrast, Blotter
supports ACID transactions with NMSI.

9. CONCLUSION
In this paper, we studied the possibility of using NMSI to im-

prove the performance of geo-replicated transactional systems. We
proposed Blotter, a system that leverages this isolation level to in-
troduce a set of new protocols. Our evaluation shows that Blot-
ter outperforms other systems with stronger semantics, namely in
terms of throughput. As such, our protocols may prove useful for
systems that are performance critical and can run under NMSI.

Acknowledgments
Computing resources for this work were provided by an AWS in
Education Research Grant. The research of R. Rodrigues is funded
by the European Research Council (ERC-2012-StG-307732) and
by FCT (UID/CEC/50021/2013). This work was partially sup-
ported by NOVA LINCS (UID/CEC/04516/2013) and EU H2020
LightKone project (732505).

10. REFERENCES
[1] S. Almeida, J. Leitão, and L. Rodrigues. Chain- reaction: A

causal+ consistent datastore based on chain replication. In
Proc. of 8th European Conference on Computer Systems,
EuroSys’13, pages 85–98, 2013.

[2] R. Ananthanarayanan, V. Basker, S. Das, A. Gupta, H. Jiang,
T. Qiu, A. Reznichenko, D. Ryabkov, M. Singh, and
S. Venkataraman. Photon: Fault- tolerant and scalable
joining of continuous data streams. In SIGMOD ’13: Proc.
of 2013 international conf. on Management of data, pages
577–588, 2013.

[3] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage for
interactive services. In Proc. of the Conference on Innovative
Data system Research (CIDR), pages 223–234, 2011.

[4] P. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys,
13(2), January 1981.

[5] N. Bronson et al. Tao: Facebook’s distributed data store for
the social graph. In Proc. of the 2013 USENIX Annual
Technical Conference, pages 49–60, 2013.

[6] D. G. Campbell, G. Kakivaya, and N. Ellis. In Proc. of the
2010 ACM SIGMOD International Conference on
Management of Data, pages 1021–1024.

[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for structured
data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with ycsb. In
Proc. of the 1st ACM Symposium on Cloud Computing,
pages 143–154, 2010.

[9] J. C. Corbett et al. Spanner: Google’s globally-distributed
database. In Proc. of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI’12,
pages 251–264, 2012.

[10] G. DeCandia et al. In Proc. of the 21st ACM Symposium on
Operating Systems Principles, pages 205–220.

[11] A. K. Elmagarmid. A survey of distributed deadlock
detection algorithms. SIGMOD Rec., 15(3):37–45, Sept.
1986.

[12] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database
replication using generalized snapshot isolation. In
Proceedings of the 24th IEEE Symposium on Reliable
Distributed Systems, SRDS ’05, pages 73–84, Washington,
DC, USA, 2005. IEEE Computer Society.

[13] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and
T. Anderson. Scalable consistency in Scatter. In Proc. of the
23rd ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 15–28, 2011.

[14] J. Gray and L. Lamport. Consensus on transaction commit.
ACM Trans. Database Syst., 31(1):133–160, Mar. 2006.

[15] T. Hoff. Latency is everywhere and it costs you sales - how
to crush it. Post at the High Scalability blog.
http://tinyurl.com/5g8mp2, 2009.

[16] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. Mdcc: Multi-data center consistency. In Proc. of
the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 113–126, 2013.

[17] A. Lakshman and P. Malik. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev.,
44(2):35–40, Apr. 2010.

[18] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, July
1978.

[19] L. Lamport. The part-time parliament. ACM Trans. Comput.
Syst., 16(2):133–169, May 1998.

[20] L. Lamport, D. Malkhi, and L. Zhou. Reconfiguring a state
machine. ACM SIGACT News, 41(1):63–73, Mar. 2010.

[21] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. In Proc. of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 401–416.

[22] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency geo-replicated
storage. In Proc. of the 10th USENIX Conference on
Networked Systems Design and Implementation, NSDI’13,
pages 313–328, 2013.

[23] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and
A. El Abbadi. Low-latency multi-datacenter databases using
replicated commit. Proc. VLDB Endow., 6(9):661–672, July
2013.

[24] M. Saeida Ardekani, P. Sutra, and M. Shapiro.
Non-Monotonic Snapshot Isolation: scalable and strong
consistency for geo-replicated transactional systems. In Proc.
of the 32nd IEEE Symposium on Reliable Distributed
Systems (SRDS 2013), pages 163–172, 2013.

[25] M. Saeida Ardekani, P. Sutra, M. Shapiro, and N. Preguiça.
On the scalability of snapshot isolation. In Euro-Par 2013
Parallel Processing, volume 8097 of LNCS, pages 369–381.
Springer, 2013.

[26] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Comput. Surv.,
22(4):299–319, Dec. 1990.

[27] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey,
E. Rollins, M. Oancea, K. Littlefield, D. Menestrina,
S. Ellner, J. Cieslewicz, I. Rae, T. Stancescu, and H. Apte.
F1: A distributed sql database that scales. Proc. VLDB
Endow., 6(11):1068–1079, Aug. 2013.

[28] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In Proc. of the 23rd ACM
Symposium on Operating Systems Principles, SOSP ’11,
pages 385–400, 2011.

[29] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy, and
D. R. K. Ports. Building consistent transactions with
inconsistent replication. In Proc. of the 25th ACM
Symposium on Operating Systems Principles (SOSP), pages
263–278, 2015.

[30] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. Aguilera, and
J. Li. Transaction chains: Achieving serializability with low
latency in geo-distributed storage systems. In Proc. of the
24th ACM Symposium on Operating Systems Principles,
SOSP, pages 276–291, 2013.

Exploiting Speculation in Partially Replicated Transactional
Data Stores

Zhongmiao Li†⋆, Peter Van Roy† and Paolo Romano⋆
†Université catholique de Louvain ⋆Instituto Superior Técnico, Lisboa & INESC-ID

CCS CONCEPTS
• Information systems→ Distributed database transactions;
Storage replication;

Online services are often deployed over geographically-scattered
data centers (geo-replication), which allows services to be highly
available and reduces access latency. On the down side, to provide
ACID transactions, global certification (i.e., across data centers) is
needed to detect conflicts between concurrent transactions execut-
ing at different data centers. The global certification phase reduces
throughput because transactions need to hold pre-commit locks,
and it increases client-perceived latency because global certification
lies in the critical path of transaction execution.
Internal and external speculation. This work investigates the
use of two speculative techniques to alleviate the above problems:
speculative reads and speculative commits.

Speculative reads allow transactions to observe the data item ver-
sions produced by pre-committed transactions, instead of blocking
until they are committed or aborted. Speculative reads can reduce
the effective duration of pre-commit locks, thus increasing through-
put and reducing latency. Speculative reads are a form of internal
speculation, as misspeculations never surface to clients.

Speculative commits remove the global certification phase from
the critical path of transaction execution, which can further reduce
user-perceived latency. Speculative commits are a form of external
speculation, since they expose to clients the results produced by
transactions still undergoing global certification. Thus, speculative
commits require programmers to define compensation logic to deal
explicitly with misspeculations.
Avoiding the pitfalls of speculation. Past work has shown that
the use of speculative reads and speculative commits [3, 4, 6] can
enhance the performance of transactional systems. However, these
approaches suffer from several limitations:

1. Unfit for geo-distribution/partial replication. Some ex-
isting works in this area were not designed for partially replicated
geo-distributed data stores, as they either target full replication [6]
or rely on a centralized sequencer that imposes prohibitive costs in
WAN environments [4].

2. Subtle concurrency anomalies. Existing geo-distributed
transactional data stores that support speculative reads [3] expose

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SoCC ’17, September 24–27, 2017, Santa Clara, CA, USA
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5028-0/17/09.
https://doi.org/10.1145/3127479.3132692

applications to anomalies, e.g., data snapshots that reflect only
partial updates of transactions or include versions created by con-
flicting concurrent transactions. Such anomalies can be potentially
quite dangerous as they can lead applications to exhibit unexpected
behaviors (e.g., crashing or hanging in infinite loops) and external-
ize erroneous states to clients.

3. Performance robustness. In adverse scenarios (e.g., high
contention), the injudicious use of speculative techniques can sig-
nificantly penalize performance, rather than improving it.
Contributions.We propose Speculative Transaction Replication
(STR), a novel speculative transactional protocol for partially repli-
cated geo-distributed data stores [5]. STR avoids the problems
of centralization by using loosely synchronized clocks, similar to
Clock-SI [1]. STR avoids the concurrency anomalies introduced by
speculation by obeying a new concurrency criterion called Specula-
tive Snapshot Isolation (SPSI). In addition to guaranteeing Snapshot
Isolation (SI) for committed transactions [2], SPSI allows an executing
transaction to read data item versions committed before it started
(as in SI), and to atomically observe the effects of non-conflicting
transactions that originated on the same node and pre-committed
before it started. Finally, to enhance performance robustness STR
employs a lightweight self-tuning mechanism that uses hill climb-
ing based on workload measurements to dynamically adjust the
aggressiveness of the speculative mechanisms.

Our evaluation shows that the use of internal speculation yields
6× throughput increase and 10× latency reduction in a fully trans-
parent way. Furthermore, applications that exploit external specu-
lation can achieve a reduction of user-perceived latency by up to
100×. These numbers are achieved for both synthetic and realistic
workloads characterized by low inter-data center contention, while
the self-tuning mechanism ensures gradual fallback to a standard
non-speculative processing mode as contention increases.
ACKNOWLEDGEMENT
This work is partially funded by the H2020 project 732505 LightKone, by FCT via
projects UID/CEC/50021/2013 and PTDC/EEIÂŋSCR/1743/2014 and by EACEA award
2012-0030.

REFERENCES
[1] Jiaqing Du et al. 2013. Clock-SI: Snapshot isolation for partitioned data stores

using loosely synchronized clocks. In SRDS. IEEE, 173–184.
[2] Sameh Elnikety et al. 2005. Database replication using generalized snapshot

isolation. In SRDS. IEEE, 73–84.
[3] Goetz Graefe et al. 2013. Controlled lock violation. In SIGMOD. ACM, 85–96.
[4] Evan Jones et al. 2010. Low overhead concurrency control for partitioned main

memory databases. In SIGMOD. ACM, 603–614.
[5] Zhongmiao Li, Peter Van Roy, and Paolo Romano. 2017. Speculative transaction

processing in geo-replicated data stores. Technical Report 2. INESC-ID.
[6] Paolo Romano et al. 2014. On speculative replication of transactional systems. J.

Comput. Syst. Sci. 80, 1 (Feb. 2014), 257–276.

Multimodal Indexable Encryption for Mobile
Cloud-based Applications

Bernardo Ferreira, João Leitão, Henrique Domingos
DI, FCT, Universidade NOVA de Lisboa & NOVA LINCS

{bf, jc.leitao, hj}@fct.unl.pt

Abstract—In this paper we propose MIE, a Multimodal Index-
able Encryption framework that for the first time allows mobile
applications to securely outsource the storage and search of their
multimodal data (i.e. data containing multiple media formats) to
public clouds with privacy guarantees. MIE is designed as a
distributed framework architecture, leveraging on shared cloud
repositories that can be accessed simultaneously by multiple
users. At its core MIE relies on Distance Preserving Encodings
(DPE), a novel family of encoding algorithms with cryptographic
properties that we also propose. By applying DPE to multimodal
data features, MIE enables high-cost clustering and indexing
operations to be handled by cloud servers in a privacy-preserving
way. Experiments show that MIE achieves better performance
and scalability when compared with the state of art, with
measurable impact on mobile resources and battery life.

I. INTRODUCTION

Mobile devices currently permeate everyday life, surpassing
the sales of PCs and Laptops by six times [44] and being
responsible for more than 70% of multimedia consumption on
the Internet [14]. The advent of mobile devices and tablets has
changed the way users produce and manipulate data. On the
one hand, users now produce larger quantities of multimodal
data (i.e. data containing various media formats such as photos,
audio, and text) through their mobile devices [22]. On the other
hand, data access and sharing is expected to be ubiquitous [13].

Due to resource limitations (computational power, battery
life, and storage capacity) and increasingly larger collections
of data produced and accessed by users1, mobile devices have
been a key driving factor for cloud computing solutions and
the outsourcing of both data storage and processing [44]. This
trend is also known as Mobile Cloud Computing [18]. In such
solutions, the cloud effectively operates as a natural extension
to the limited storage and computational resources of mobile
devices. Furthermore, given such large datasets, being able to
efficiently search and retrieve relevant subsets of their data
becomes of increased importance for users.

However outsourcing to the cloud inherently leads to de-
pendability and privacy challenges, especially when data and
computations are sensitive or of critical nature. This is a
natural observation as outsourcing data and computations also
entails outsourcing control over them [12]. Recent news have
proven that users’ privacy is not protected when using cloud
services [54]. Governments impose increasing pressure on
technological companies to disclose users’ data and build inse-
cure backdoors [15], [26]. Malicious or simply careless cloud

1In cloud-backed multimedia storage apps like iCloud Photos: http://www.
apple.com/icloud/photos; and Google Photos: https://www.google.com/photos.

system administrators have been responsible for critical data
disclosures [11], [21]. Finally, one also has to consider internet
hackers exploiting software and hardware vulnerabilities in the
cloud providers’ infrastructure [40].

A common approach for dealing with these dependability
issues is to use end-to-end encryption schemes, where users’
devices are responsible for encrypting all data before sending it
to the cloud [4], [42]. However these schemes restrict function-
alities available to users, including efficient data sharing and
searching operations through the cloud infrastructure. While
data sharing can easily be achieved through key distribution
[36], searching encrypted data is a non trivial challenge.

The research community has tried to address this chal-
lenge by proposing Searchable Symmetric Encryption (SSE)
schemes [2], [10], [16], [27], [34], [35], [49], [55]. Originally
designed for exact-match searching in text documents, SSE
schemes allow querying encrypted data in sub-linear time, by
having users index their data (i.e. build a compact dictionary
of the data; e.g. with the unique keywords of each text
document) and upload both encrypted index and data to the
cloud. However extending SSE to richer queries [2], [8], [57]
and other media domains [20], [41] has proven challenging.
On one hand, indexing computations of multimodal data
and rich media types (including images, audio, and video)
are too expensive, especially for mobile client devices and
considering that training tasks (i.e. clustering and machine
learning algorithms) also have to be performed before data
can be efficiently indexed [17]. On the other hand, the few
existing approaches [2], [8], [41], [57] are still limited to
static collections (i.e. data can’t be added, updated, or removed
dynamically after deployment and initial load of a repository).

On a side note, searching encrypted data in sub-linear time
is only possible by revealing some information patterns to
adversaries with each query, including if the query has been
performed before and which data objects, although encrypted,
were returned by it (search and access patterns [16], respec-
tively). This note is important, as it will be leveraged in the
core design of our solution as explained next.

In this paper we propose a novel framework to tackle
the practical challenges of supporting mobile applications
dynamically storing, sharing, and searching multimodal data in
public cloud infrastructures while preserving privacy. We call
our proposal MIE - Multimodal Indexable Encryption. MIE
leverages from two insights: on the one hand, the leakage
of search and access patterns has been proven unavoidable

2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

2158-3927/17 $31.00 © 2017 IEEE

DOI 10.1109/DSN.2017.31

213

in order to search encrypted data in sub-linear time [48]; on
the other hand, in practical deployments where many queries
are submitted concurrently by multiple users, these patterns
are eventually revealed for the entire index space (i.e. for all
possible queries). Leveraging these insights, we contrive MIE
to reveal information patterns with each add/update operation,
instead of each query. This will allow users to dynamically
update and search multimodal repositories while securely
outsourcing indexing and training computations to the cloud,
which we later show to be the heaviest and more unsuitable
computations for mobile applications.

To support MIE’s operations we propose a novel family
of encoding algorithms with cryptographic properties, called
DPE - Distance Preserving Encodings. DPE schemes securely
encode data while preserving a controllable distance function
between plaintexts. By extracting feature-vectors from mul-
timodal data and encoding them with DPE, users are able to
outsource training and indexing computations to the cloud in a
privacy-preserving way. We formally define DPE and present
two efficient implementations: one for dense media types (e.g.
images, audio, and video) and another for sparse media (e.g.
text). DPE is of particular interest on itself and can be easily
integrated in other secure protocols.

We implemented both an Android and Desktop applications
on top of our MIE framework for those platforms. These
applications, designed to support the storage and search of
multimodal data containing text and image formats, are used
to experimentally validate MIE’s performance, scalability, and
battery consumption in mobile devices. Since (as far as we
know) MIE is the first endeavor in multimodal encrypted
search, we also implemented a recent SSE scheme from the
literature [10], extended it to support multimodal searching,
and experimentally compared its performance with MIE. Our
implementations are open source and publicly available at:
https://github.com/bernymac/MIE.

In summary, this paper makes the following contributions:
• We propose an alternative design to dynamically updating

and searching encrypted multimodal data that allows the secure
outsourcing of training and indexing computations. We call our
proposal MIE - Multimodal Indexable Encryption (§V).

• To support MIE’s operations we propose a new family of
cryptographic primitives that preserve a controllable distance
function between plaintexts. We call our proposal DPE -
Distance Preserving Encodings (§IV);

• We implement MIE, both for Desktop and Mobile (An-
droid) devices (§VI), and a multimodal SSE scheme based
on the recent literature [10], evaluating and comparing both
in terms of performance and scalability across different op-
erations (§VII). Real-world datasets and public commercial
clouds (Amazon EC2) are used in these experiments.

II. RELATED WORK

Searching encrypted data is currently a hot research topic,
with the increasing popularity of storage and computation
cloud services and the security issues they bring. In the last
decades, relevant advances have been achieved in powerful

cryptographic mechanisms that allow generic computations
on encrypted data, including Fully Homomorphic Encryption
[23] and Oblivious RAM [56]. However such techniques still
remain too expensive to be practical: e.g. computing an AES
decryption circuit through fully homomorphic encryption is at
least 109 times slower [23]; while developing an SSE scheme
on top of Oblivious-RAM, protecting access patterns, increases
query data-transfer overheads by at least 128 times compared
to conventional SSE, and by at least 1.75 times compared to
downloading the entire database with each query [48].

Searchable Symmetric Encryption (SSE) [16] strives for a
practical balance between efficiency and security. Originally
designed for exact-match search over static collections of
text documents of a single user, SSE schemes are able to
achieve sub-linear search performance by initially revealing no
information regarding the encrypted data and then gradually
revealing some information patterns with each search oper-
ation [16]. These leaked information patterns include: search
patterns, i.e. has this query been issued before, which is leaked
by a deterministic hash of the query; and access patterns,
i.e. which data objects are returned by each query, which is
leaked by the deterministic identifiers of the objects. Extending
SSE for dynamic collections, where documents can be added,
updated, and deleted at runtime, initially lead to the further
disclosure of update patterns [35], [49] (i.e. if new documents
share contents with previously stored documents, leaked by
deterministic hashes of the new document’s keywords).

Recent dynamic SSE schemes were able to overcome the
update leakage issue by increasing operational overhead [34],
[55] and/or requiring client storage that grows linearly with
the number of unique keywords [6], [10], [27]. Recent works
also introduced the concept of forward privacy [6], [55],
which states that updates should leak no information even
when combined with old query tokens. However in practical
scenarios with many queries being submitted by multiple users
simultaneously, such guarantees can not hold for long periods.

With the exception of [49], dynamic SSE schemes described
so far depend on heuristic models, like the Random Oracle
model, which may not have secure implementations in practice
and that have been highly criticized in recent years [24]. Mak-
ing them secure under standard security assumptions requires
further client processing and largely increased communication
overhead [10], [55], turning these solutions unpractical.

Supporting richer query expressiveness in SSE has not been
easy to achieve. The first SSE-based schemes for ranked
retrieval were either based on insecure cryptographic prim-
itives [57], or required heavy client processing and search
time linear with the index size [8]. These SSE schemes also
further revealed frequency patterns, i.e. how many times each
queried keyword appears in retrieved documents. Hiding this
information has only been possible by assuming the existence
of a user-controlled cryptographic module in the cloud server,
which would perform multi-party computation with the server,
besides encrypting the index with an additively-homomorphic
encryption scheme [2]. Furthermore these ranked SSE schemes
have so far been restricted to static document collections, as

214

Scheme Search Update Client Revocation Query Search Update
Time Time Storage Size Type Leakage Leakage

Naveed’14 [49] O(m/n) O(m/n) O(1) – Text Match ID(w), ID(d) ID(w)
Cash’14 [10] O(m/n) O(m/n) O(n) O(m) Text Match ID(w), ID(d) –

Stefanov’14 [55] O(m/n+ logm) O(log2N) O(m) – Text Match ID(w), ID(d) – (forward private)
Cao’14 [8] O(n2) O(n2) O(1) – Text Ranked ID(w), ID(d) ID(w), freq(w)

Ferreira’15 [20] O(m/n) O(m/n) O(1) – Image Ranked ID(w), ID(d) ID(w), freq(w)

MSSE O(m/n) O(m/n) O(n) O(m) Multimodal ID(w), ID(d), freq(w) –
Hom-MSSE O(m/n) O(m/n) O(n) O(m) Multimodal ID(w), ID(d) –

MIE O(m/n) O(m/n) O(1) – Multimodal ID(w), ID(d) ID(w), freq(w)

TABLE I: Overview of average complexities for the literature on SSE, our work (MIE), and two multimodal SSE schemes (MSSE and Hom-MSSE) designed
for baseline experimental comparison by extending the recent literature on SSE [10] (more details in the Evaluation Section §VII). The reader should note that
although MIE displays the same search and update time complexities as its two multimodal alternatives, it resorts to more efficient cryptographic primitives,
resulting in faster operation time in practice (as will be revealed in §VII). Table Legend: n is the number of unique keywords (or similar concept in other
medias, e.g. a keypoint in an image), m is the total number of index entries (keywords or other), |F | is the number of data-objects, ID(w) is the deterministic
id of a keyword being queried or added to a data-object, ID(d) represents the ids of the data-objects returned by a query (i.e. that contain the queried
keyword), and freq(w) is the frequency of a keyword in data-objects being updated or returned by a query.

they depend on pre-computed and immutable ranking scores
that would need to be refreshed and re-encrypted with each
document addition, update, or removal.

SSE schemes are usually designed for single writer and
single reader/searcher scenarios [2], [10], [27], [55]. Some
SSE schemes extend this model to support multiple searchers,
however it must be a single writer to generate searching tokens
for all other users [8], [57]. Searchable encryption in the public
key setting (also know as PEKS) [5] allows the opposite:
multiple writers can use a public key to write data, but only
a single reader can use the respective private key to search
that data. In [53], a multi-key searchable encryption scheme
supporting multiple writers and searchers was proposed. How-
ever this approach is based on bilinear maps on elliptic curves
(which are an order of magnitude slower than conventional
symmetric cryptography), has linear-time search performance,
and although it supports multiple users it does not address user
access control and revocation issues.

Besides text documents, SSE-based schemes have also been
designed for other media domains such as images [20], [41].
However, the overhead imposed on client devices in text
ranked searching is even more noticeable in the context of
images, as machine learning tasks (also known as training) are
usually required before dense media types (i.e. images, audio,
and video) can be indexed [17]. Furthermore, both training and
indexing of dense media data are computationally intensive
operations. Some of these performance issues were addressed
in [20], however this approach was limited to color features in
the image domain. Hence, and to the best of our knowledge,
this paper presents the first endeavor in supporting encrypted
storage and search of multiple media formats simultaneously
(i.e. multimodal data) in a practical way, while supporting
resource-restricted mobile devices. Table I provides a summary
review of the recent literature on SSE and comparison with
our approach across multiple distinguishing factors.

III. TECHNICAL OVERVIEW

In this section we present an overview of MIE and the
system and adversary models that we consider. We start with
some notations and fundamental concepts: we call multimodal

data-object, or simply object, to an aggregation of data with
multiple media formats or modalities (i.e. an object containing
text, image, audio, and/or video; examples are annotated
images, wikipedia pages, and personal health records [47]); a
repository is a collection of multimodal data-objects; features
are characterizations of objects in some particular media type
(e.g. the text modality of an object can be characterized
by its most relevant textual keywords [43], while the image
modality by a set of visual points of interest [3]); feature-
vectors are vectorial representations of features, describing
an object across its multiple modalities. Feature-vectors are
essential components to enable efficient search in repositories
containing large collections of multimodal objects.

Multimodal searching uses a multimodal object as query
for searching in a multimodal repository. Search results are
usually obtained for each media format in separate and aggre-
gated through a multimodal merging function [47].

Indexing takes a collection of data-objects and constructs
a dictionary describing them under some features (e.g. which
keywords appear in each text document) [43]. This dictionary,
called index, forms a compressed representation of the data
and allows searching in sub-linear time (e.g. searching for a
keyword becomes equivalent to one dictionary access, instead
of linearly scanning all text documents).

Training tasks are machine learning operations, such as the
k-means clustering algorithm [28], used to find homogeneous
groups of objects in dense, high-dimensional data [1]. These
groups are used to build more compact representations of
high-dimensional data-objects. Example: an object-recognition
algorithm [3] finds multiple points of interest in an image.
Training a collection of such keypoints from different images
yields a group of Distinctive Keypoints [50]. Representing all
keypoints of an image in a compact way can then be achieved
by finding the most similar Distinctive Keypoint of each and
building an histogram with their frequencies.

A. System Model and Architecture
In this paper we focus on the challenges inherent to building

practical, secure, and searchable cloud-backed multimodal data
repositories especially tailored for mobile devices. We consider

215

Fig. 1: System model with example interactions between users and the cloud
infrastructure, considering image and text media domains.

a system with multiple readers and writers (the Users) who
store, share, and search data through multiple independent
repositories hosted by a Cloud Server (or simply Server).
We assume all data is outsourced to these repositories in the
form of data-objects that may contain multiple media formats.
A repository is created by one user, and can be used by
multiple (authorized) users besides herself. Authorized users
can upload their own multimodal data-objects, search through
the use of multimodal queries, and retrieve/read objects stored
in a repository. Figure 1 provides a high level overview of the
described system model.

Upon the creation of a repository, we delegate on the user
that created it the task of generating and sharing a Repository
Key with his trusted users. This cryptographic key allows users
to search and add/update objects in that particular repository.
More concretely, it is used in the indexing of new/updated
objects, as well as in the generation of searching trapdoors. In
addition to repository keys we also employ Data Keys, used to
encrypt the data-objects themselves (using a semantically se-
cure block-cipher, such as AES in CTR mode [36]). Data keys
offer users a fine-grained access control over who accesses the
full contents of their data-objects; nonetheless they should be
seen as an optional functionality, and they can be discarded
from the system design in use cases where fine-grained access-
control is not required (for instance, by encrypting all data-
objects with a shared master key).

When adding (or updating) data-objects in a repository, a
user will first process them and extract their feature-vectors
in their different modalities. These feature vectors are then
encrypted with a Distance Preserving Encoding (DPE, detailed
in §IV) and uploaded to the cloud server for training and
indexing, alongside the encrypted data-object.

Authorized users with a repository key can also issue
multimodal queries, using data-objects with any number of
(supported) modalities as queries. To this end they process
their query objects the same way as for new data-objects,
extracting and encrypting their feature-vectors with DPE and

sending them to the cloud server. After receiving an encrypted
multimodal query, the cloud server returns the ranked top k
matches for it, where k is a configurable parameter. Each of
these k matches contains a pair of encrypted data-object and
metadata, the later containing deterministic identifiers for the
object and its owner (unless data keys have been removed from
the system’s design, to fully access its contents the querying
user will still need to ask the object’s owner for its data key).

All remote communications between users and the server
should be encrypted and authenticated through secure commu-
nication protocols (TLS/SSL [36]). Key sharing interactions
can be done asynchronously and out-of-band by resorting to
broadcast encryption [16] or a key-sharing protocol based on
public-key authentication [36]. User authentication and access
control can be achieved through different mechanisms found
in the literature, such as sharing authorization tokens between
trusted users [16]. This discussion, however, is orthogonal to
the main focus of the paper as these mechanisms can easily
be integrated into our solution.

B. Adversary Model
In this work we aim at protecting the privacy of users’ data

and queries. Similar to previous approaches from the literature
[2], [10], [16], [27], [55], we consider as main adversary
the cloud administrator. This adversary acts in a honest-but-
curious way, operating the cloud’s infrastructure and possibly
eavesdropping on users’ data, but nonetheless is expected to
fulfill its contract agreements and correctly perform operations
when asked. We assume that the cloud administrator has access
to all data stored on disk or in RAM on any device physically
connected to the server, and passing through the network from
or to the cloud. Throughout this paper we prove the security
of our proposals against such an adversary. We also assume
the cloud provider to protect its infrastructure from Internet
hackers, as it is in its best interest to protect its infrastructure,
its clients, and its reputation.

A stronger adversary that should also be considered is a
malicious user, i.e. a user of the system who deviates from
his expected behavior. Malicious users are an open problem
for any multi-user application, as they may be given access
to multiple repository and data keys before being discovered,
and can more easily eavesdrop on other users’ data. In this
work we can mitigate the effect of this adversary by providing
user access control enforcement and revocation mechanisms,
complemented with public-key authentication and periodic
key refreshment. Furthermore, we do not consider integrity
or availability threats, as they can be handled by different
mechanisms orthogonal to the contributions of this paper [38].
Finally, we assume that the higher-level applications using
our work can control the amount of background information
they reveal, as this may be sensitive and can be leveraged
by adversaries for breaking security [9]. In §V-A we discuss
possible attack vectors on our work and how to mitigate them.

C. Application Use Case
To provide examples of applications that could benefit from

our work, we now briefly discuss a use case and explain the

216

mapping of concrete entities between it and the previously
introduced system model.

Personal Health Records. The number of mobile applica-
tions leveraging sensorial data for personal health tracking
is growing by a large faction [37]. Moreover, major cloud
operators are now offering centralized storage and compu-
tation services for such critical health data, under the form
of Personal Health Records (PHR) [45]. PHR may contain
information regarding users’ health conditions under multiple
media formats, extracted from their mobile devices’ sensors,
as well as from medical consultations and healthcare exams
performed by healthcare professionals at different medical
centers. The availability of this information not only ensures a
better healthcare service for patients, but also offers a high
potential for the exchange of medical information among
different healthcare practitioners and institutes, for medical
research purposes and to assist in the treatment of patients
with similar conditions.

In this scenario, patients or medical doctors on their behalf
(i.e. the Users), outsource their PHR directly from their mobile
devices or IoT healthcare devices to a cloud-based backend
(i.e. the Cloud Server). Because PHRs belong to the patients,
these records can be protected by Data Keys only known
to them (and possibly shared with trusted doctors with the
patients explicit permission). On the other hand, Repository
Keys can be shared between medical doctors and centers, orga-
nized in alliance based or medical-specialty based repositories
between cooperating professionals. Doctors can then search
on these repositories, requesting data keys to PHRs that might
be of their interest directly to the respective patients.

IV. DISTANCE-PRESERVING ENCODING

In this section we propose a new family of encoding
algorithms, called Distance Preserving Encodings (DPE). Our
proposal of DPE comes from the generalization and formal
analysis of the main principles behind different existing mech-
anisms for privacy-preserving nearest-neighbor and similarity
computations [7], [20], [33], [41]. DPE is the basis of this
work and our new approach to searching multimodal encrypted
data. Nonetheless its abstract concept may have interesting
applications in other contexts, and as such we present it as an
independent building block that doesn’t explicitly depend on
external aspects of the system using it. We start this section
by formally defining DPE. Then we present two efficient
implementations of DPE, one applied to dense media types
(e.g. images), and another for sparse media (e.g. text). Both
implementations are used in §VI to implement an efficient
Multimodal Indexable Encryption prototype.

A. DPE Definition
Informally, Distance Preserving Encodings (DPE) are a fam-

ily of encoding schemes that preserve a controllable distance
function between plaintexts, by means of their respective en-
codings. We say the distance function is controllable, meaning
that on instantiation of a DPE scheme a security threshold
parameter should be defined, which will allow controlling the

Algorithm 1 Dense-DPE Implementation
1: function KEYGEN(N,M,Δ)
2: A← G(M ×N) � Generate A
3: w ← G[0,Δ](M) � Generate w, limited by 0 and Δ
4: t← Func(Δ) � t is controlled by Δ
5: return K = {A,w}, t
6: function ENCODE(p,K = {A,w})
7: e← Q(Δ−1.(A.p+ w)) � Q(.) is fixed
8: return e
9: function DISTANCE(e1, e2)

10: D ← NormHamm(e1, e2) � Equal to Eucl(p1, p2) if D < t
11: return D

amount of information leaked by encodings. More specifically,
DPE encodings should only preserve distances between plain-
texts up to the value of the threshold. For greater distances,
nothing should be leaked by DPE encodings. This threshold
allows defining an upper bound on information leakage and
security, as it will limit the adversarial ability to perform
statistical attacks and establish a distance relation between
different plaintexts in the application domain. More formally:

Definition 1 (Distance Preserving Encoding). A Distance
Preserving Encoding (DPE) scheme is a collection of three
polynomial-time algorithms (KEYGEN, ENCODE, DISTANCE)
run by a client and a server, such that:

• K, t ← KEYGEN(1k): is a probabilistic key generation
algorithm run by the client to setup the scheme. It takes the
security parameter k and returns a secret key K and a distance
threshold t, both function of and polynomially bounded by k.
• e ← ENCODE(K, p): is a deterministic algorithm run

by the client to encode plaintext p with key K, with p
polynomially bounded by k. It outputs an encoding e.

• D ← DISTANCE(e1, e2): is a deterministic algorithm
run by the server that takes as input two encodings e1
and e2. For plaintext distance function [0, 1] ← dp(·, ·)
and encoded distance function [0, 1] ← de(·, ·) (possibly
dp = de) with inputs polynomially bounded by k, it outputs
D = de(e1, e2) = dp(p1, p2), if dp(p1, p2) < t. Otherwise it
outputs D = t.

Given the definition of DPE, in our companion technical
report [19] we formally specify all information leaked by
its algorithms to an honest-but-curious cloud adversary. We
remark that the information leaked is limited to the Distance
algorithm and controllable by threshold t. Nonetheless, an
adversary can still leverage this leakage to learn some statistics
about the data being encoded, and it’s up to the applications
using DPE to ensure those statistics are not sensitive.

B. A DPE Implementation for Dense Data
Rich media types, including images, audio, and video are

characterized by their high-dimensionality and high-density
[1]. High dimensionality means that multiple coordinates (the
dimensions) are required to describe a point (i.e. a feature-
vector) in these media types. As an example, consider the
SURF [3] feature extraction algorithm for images, which com-
putes feature-vectors of 64 dimensions. High density means
that in all dimensions necessary to describe a feature-vector,
most will have a rational value different from zero (even if
close, e.g. 0.01). This is defined in clear contrast to sparse

217

media types such as text, where a document only has a finite
subset of keywords from the whole english vocabulary [43] (or
any other language) and non-existing keywords can simply be
omitted from a feature-vector characterization of the document
(e.g. a keyword-frequency histogram).

A DPE implementation for dense data should be able
to efficiently encode high-dimensional feature-vectors, while
preserving some parametrizable distance function between
them. To achieve this goal we extend the encoding proposed
by Boufounos et al. [7] for privacy-preserving nearest neigh-
bors. This encoding cryptographically protects feature vectors
by transforming them through universal scalar quantization
[7]. Moreover, it preserves Euclidean [43] distances between
plaintext feature-vectors, through the normalized Hamming
[43] distances between encodings, but only up to a tunable
threshold t. For plaintext distances greater than t, the distance
between encodings conveys no information and will tend
to a constant value. More concretely, feature vectors are
transformed through the following function:

e(x) = Q(Δ−1(Ax+ w)) (1)

where x ∈ RN is a N -dimensional feature vector given as
input, A ∈ RM×N is a random matrix with independent and
identically distributed elements (M is a tunable parameter
representing the output size and basically controls the noise
introduced by the encoding), Δ is a tunable scaling factor
operating element-wise which controls the distance threshold
t, w ∈ RM is an additive dither uniformly distributed in [0,Δ],
and Q(.) is a scalar quantizer with non-contiguous intervals
such that scalar values in [2v, 2v+1) quantize to 1 and values
in [2v + 1, 2v + 2) quantize to 0, for any v. Finally, {A,w}
compose the secret key of this scheme.

The previous scheme suffers from a main applicability
limitation: secret key {A,w} has size proportional to the input
and output sizes (N and M respectively). This approach leads
to large key sizes and limits flexibility of deployment, as a
change on input/output length (e.g. user changes the type of
features used for indexing and searching) forces the generation
and sharing of a new secret key with the appropriate size. To
solve this issue, we introduce a Pseudo-Random Generator
(PRG) G [36] in the key generation algorithm of the previous
scheme, instantiated with some random bits of entropy as
cryptographic seed. The random values in A and w will be
generated through G, and for a Probabilistic Polynomial-Time
(PPT) bounded adversary these values are indistinguishable
from true random values [36].

Algorithm 1 describes our implementation in detail, which
we call Dense-DPE. Consistent with our definition for DPE,
Dense-DPE only reveals a distance function between the
feature-vectors of data-objects, and this function is limited by
threshold t. In our technical report [19] we prove this claim
and show that Dense-DPE is a secure realization of DPE.

C. A DPE Implementation for Sparse Data
Since in sparse media types, such as text data, feature-

vectors are much smaller compared with dense media types,

Algorithm 2 Sparse-DPE Implementation
1: function KEYGEN(k)
2: K ← G(k)
3: t← 0
4: return K, t
5: function ENCODE(p,K)
6: e← PK(p)
7: return e
8: function DISTANCE(e1, e2)
9: if e1 == e2 then

10: D ← 0
11: else
12: D ← 1
13: return D

more efficient algorithms can be used to index and search
sparse media. More concretely, to index and search in sparse
data, we only need to compare the different non-null values
in its feature-vectors for equality2 (e.g. the keywords of each
text document). Translating this to the DPE definition, our
DPE implementation for Sparse Data will have a similarity
distance threshold of t = 0, meaning that it will only reveal
if two keywords are equal, and nothing will be revealed even
if they are only one character apart.

To achieve the above goals, we base our DPE implemen-
tation for Sparse Data on a Pseudo-Random Function (PRF)
[36]. More concretely, given a feature-vector from a sparse
data-object (i.e. a text document), we apply:

f(x) = PK(x) (2)

where x is a single keyword and P is a PRF, instantiated with
secret key K. In practice, P can be implemented as a keyed
hash function. Algorithm 2 provides the full details of our
implementation, which we call Sparse-DPE. In our technical
report [19] we prove that Sparse-DPE securely realizes DPE.

V. MULTIMODAL INDEXABLE ENCRYPTION

In this section we describe in detail our Multimodal In-
dexable Encryption (MIE) proposal. The main insight behind
MIE is that in practical scenarios where many queries are
submitted by multiple users concurrently, the semantic security
guarantees initially offered by SSE schemes will not hold for
long, as the information patterns leaked with each query will
eventually be revealed for the entire index space. However
those initial guarantees are only possible by having users train
and index their data before uploading it to the cloud, which
are heavy operations especially for mobile devices. Leveraging
this insight, in MIE we outsource training and indexing
computations from user’s devices to cloud servers. This is done
in a privacy-preserving way by having users extract feature-
vectors from the different media formats, encode them with
DPE, and upload the encodings to the cloud for computation.
The practical result of our approach, on one hand, is that
instead of revealing information patterns when queries are
performed, as in previous SSE schemes, we reveal them at data
creation/update time (namely search, access, and frequency
patterns). On the other hand, this approach allows us to

2Edit distance and cryptographic schemes such as [33] could be used to
construct an alternative Sparse-DPE implementation with threshold distances
greater than zero. However, exact string matching complemented with light
client-side techniques such as stemming and spell-checking wields similar
search precision in ranked text retrieval [43].

218

effectively support mobile devices dynamically updating and
searching multimodal repositories, with increased performance
and scalability (see §VII for experimental results).

From a systems perspective, MIE is defined as a distributed
framework with two main components: one running in the
client device(s), which processes data-objects, extracts feature-
vectors in their different modalities, and encrypts them; and
another (untrusted) running in the cloud servers, which per-
forms training tasks and indexes data-objects through their
encoded features. More formally:

Definition 2 (Multimodal Indexable Encryption). A
Multimodal Indexable Encryption framework is a collection
of five polynomial time algorithms (CREATEREPOSITORY,
TRAIN, UPDATE, REMOVE, SEARCH) executed
collaboratively between a user and a server, such that:

• rkR ← CreateRepository(IDR,1
spR , {IDmi

}ni=0):
is an operation started by the user to initialize a new
repository identified by IDR. It also takes as input a security
parameter spR and the n modalities to be supported by R
({IDmi}ni=0). It creates a repository representation on the
server side and outputs a repository key rkR.

• Train(IDR, rkR, {IDmi
, ipmi

}ni=0): operation invoked
by the user to initialize repository R’s indexing structures, by
performing machine learning tasks (i.e. automatic training
procedures), and index its data-objects, if any. The user also
inputs the repository key and the indexing algorithms to be
used as indexing parameters ({IDmi

, ipmi
}ni=0, one for each

modality; examples of indexing parameters are Inverted List
Index and Single Pass In Memory Indexing [43], more details
in §VI). This algorithm can be invoked multiple times with
different indexing parameters. Note however, that training
procedures are only required in dense media types (e.g.
images, audio, and video). In a repository containing only
sparse media types (e.g. text), this operation will only index
existing objects, if any.

• Update(IDR, IDp,p,dkp, rkR, {IDmi
}ni=0): is the

operation used to dynamically add or update a data-object p
in repository R. In addition to p, it also takes as input IDR
and IDp (deterministic identifiers of R and p, respectively),
dkp (data key to be used in the encryption of p), rkR
(repository key of R) and {IDmi}ni=0 (the modalities
represented in p). If the TRAIN algorithm has already been
invoked in R, p is indexed in its modalities. Otherwise p’s
indexing is performed when the TRAIN algorithm is invoked
for the first time.

• Remove(IDR, IDp): is an operation that allows a
user to fully remove a data-object p from repository R and
its indexing structures.

• {IDpi
,pi, score

q
pi
}ki=0 ← Search(IDR, q, rkR,

{IDmi
}ni=0, k): is issued by a user to search in repository

R with object q as query, returning the k most relevant data-
objects in the repository. Also takes as input the repository
key rkR and the modalities represented in q ({IDmi}ni=0). If
the TRAIN algorithm has been invoked previously for R, the
server replies to the query in sub-linear time by accessing

Algorithm 3 Create New Repository
1: function USER(U).CREATEREPOSITORY(IDR, spR)
2: rk1R ← DENSE-DPE.Keygen(spmi

)
3: rk2R ← SPARSE-DPE.Keygen(spmi

)
4: CLOUD.CreateRepository(IDR)
5: RepUsers.ShareKey({rk1R, rk2R})
6: return {rk1R, rk2R}
7: procedure CLOUD.CREATEREPOSITORY(IDR)
8: Rep[IDR] ← InitializeRepository()
9: Fvs[IDR] ← InitializeFeatureVectorsList()

R’s indexing structures. Otherwise it performs a linear search
through R’s objects.

Given MIE’s definition, Algorithms 3 through 7 detail our
MIE’s implementation based on DPE (respectively, operations
CreateRepository, Train, Update, Remove, and Search). In
our companion technical report [19] we formally specify
the information leaked by MIE (which was summarized in
Table I) and prove that its DPE-based implementation securely
realizes it. In summary, the main difference between our MIE
implementation and its secure specification is the use of DPE.
Hence, the main argument in proving security lies in showing
that by using DPE’s algorithms, our MIE implementation
doesn’t leak anything further to the server.
A. Additional Security Considerations

Applications using MIE have provable security guarantees,
equivalent to the ones of previous SSE schemes in practical
deployments frequently queried [10], of the information leaked
by each operation. However, the impact of this information
leakage and to what extent it can be leveraged by adversaries in
inference attacks is not yet fully understood. Recent advances
have been achieved in this field, with passive [9], [30] and
active [58] attacks being proposed, in the text domain, for
both query and plaintext recovery. However the efficiency of
these attacks depends on very strong assumptions. Passive
attacks require almost complete document set knowledge, i.e.
adversaries must know the contents of a large subset of all
encrypted data. For instance, the best known attack [9] requires
95% document knowledge to achieve 58% query recovery
rate. with 75% document knowledge, query recovery drops
to values close to 0%. Active attacks can have very strong
consequences, but require the adversarial ability of injecting
maliciously crafted documents, which must still be encrypted
by the client. This means that when deploying a SSE scheme
(including MIE), users should control the source of their
documents and protect their devices from external hacking.

Regarding other media domains and multimodal data, while
keywords in the text domain have a straight semantical mean-
ing, the same may not hold for similar concepts in richer
media (including audio, images, and video). Attacks over these
domains and their impact are still an open area of research and
an interesting future research direction, nonetheless we argue
that further background information (controllable by users)
may be required for adversaries to achieve acceptable recovery
rates in these medias.

VI. IMPLEMENTATION

One of the advantages of our approach lies in its flexibility
of deployment and its capacity to integrate different algorithms

219

Algorithm 4 Train Repository
1: procedure USER(U).TRAIN(IDR, {rk1R, rk2R}, IDmi

, ipmi
}n
i=0)

2: CLOUD.Train(IDR, {IDmi
, ipmi

}n
i=0)

3: procedure CLOUD.TRAIN(IDR, {IDmi
, ipmi

}n
i=0)

4: for all {IDmi
, ipmi

}n
i=0 do

5: Idx[IDR][IDmi
] ← InitializeIndex(IDmi

, ipmi
)

6: if DenseMediaType(IDmi
) then

7: CB
mi
R ← TrainIndex(Idx[IDR][IDmi

], ipmi
, Fvs[IDR])

8: IndexData(Idx[IDR][IDmi
], Fvs[IDR])

Algorithm 5 Add/Update Object in Repository
1: procedure USER(U).UPDATE(IDR, IDp, p, dkp, {rk1R, rk2R},

{IDmi
}n
i=0)

2: for all {IDmi
}n
i=0 do

3: fvspmi
← ExtractFeatureVectors(p, IDmi

)
4: if Dense-Media(IDmi

) then
5: efvspmi

← DENSE-DPE.Encode(fvspmi
, rk1R)

6: else
7: efvspmi

← SPARSE-DPE.Encode(fvspmi
, rk2R)

8: e← Enc(dkp , p)
9: CLOUD.Update(IDR, IDp, e, {IDmi

, efvspmi
}n
i=0)

10: procedure CLOUD.UPDATE(IDR, IDp, e, {IDmi
, efvspmi

}n
i=0)

11: CLOUD.Remove(IDR, IDp)
12: Rep[IDR][IDp] ← e
13: Fvs[IDR][IDp] ← {efvspmi

}n
i=0

14: if IsTrained(IDR) then
15: for all {IDmi

}n
i=0 do

16: for all fv ∈ efvspmi
do

17: if Idx[IDR][IDmi
][fv][IDp] == {} then

Idx[IDR][IDmi
][fv][IDp] ← 0

18: Idx[IDR][IDmi
][fv][IDp] + +

for feature extraction (client side) and both training and
indexing computations (server side). MIE is agnostic to the
information retrieval techniques used on either side, and they
can be used in the encrypted domain without any major
modifications from their original plaintext algorithms. With
this in mind, we implemented a prototype version of MIE to
experimentally validate its design and compare it with the most
relevant approaches from the literature. These experimental
results are detailed in §VII, while for now we focus on our
prototype description. The user-side component of MIE was
developed as an Android Service, using a mixture of Java with
Android’s SDK and C++ with Android’s Native Development
Kit. The cloud server component was fully developed in C++.

In order to showcase its multimodality, we implemented
our prototype supporting text and image data. Text feature
extraction on the user’s side is performed through standard
keyword stemming, stop-words removal, and histogram ex-
traction [43], followed by Sparse-DPE encoding. Regarding
image feature extraction, since our Dense-DPE implementa-
tion currently preserves Euclidean distances between plaintext
feature-vectors, it is more suitable for floating-point image
descriptors. As such, we use the SURF descriptor extraction
algorithm [3] and Dense Pyramid feature detection [39] for
our prototype implementation. Dense-DPE was instantiated
with threshold t = 0.5 and output size equal to the input size
(64 dimensions for SURF feature-vectors). As cryptographic
algorithms’ implementations, we use HMAC-SHA1 as imple-
mentation of Pseudo-Random Functions (PRFs), AES in CTR
mode for data-objects encryption, and an AES-based Pseudo-
Random Number Generator (PRNG) for random number gen-

Algorithm 6 Remove Object from Repository
1: procedure USER(U).REMOVE(IDR, IDp)
2: CLOUD.Remove(IDR, IDp)

3: procedure CLOUD.REMOVE(IDR, IDp)
4: if Rep[IDR][IDp]! = {} then
5: Rep[IDR][IDp] ← {}; Fvs[IDR][IDp] ← {}
6: if IsTrained(IDR) then
7: for all {IDmi

}n
i=0 do

8: for all fv ∈ Idx[IDR][IDmi
] do

9: Idx[IDR][IDmi
][fv].Remove(IDp)

Algorithm 7 Search Repository with Object as Query
1: function USER(U).SEARCH(IDR, q, {rk1R, rk2R}, {IDmi

}n
i=0 , k)

2: for all {IDmi
}n
i=0 do

3: fvsqmi
← ExtractFeatureVectors(q, IDmi

)
4: if Dense-Media(IDmi

) then
5: efvsqmi

← DENSE-DPE.Encode(fvsqmi
, rk1R)

6: else
7: efvsqmi

← SPARSE-DPE.Encode(fvsqmi
, rk2R)

8: {IDpi
, pi, score

q
pi

}k
i=0 ← CLOUD.Search(IDR, {IDmi

, efvsqmi
}n
i=0,

k)
9: return {IDpi

, pi, score
q
pi

}k
i=0

10: function CLOUD.SEARCH(IDR, {IDmi
, efvsqmi

}n
i=0, k)

11: for all {IDmi
, efvsqmi

}n
i=0 do

12: if IsTrained(IDR) then
13: histqmi

← ClusterizeAndSort(CBmi
R , fvsqmi

)
14: Resmi

← Idx[IDR][IDmi
].IndexSearch(histqmi

)
15: else
16: Resmi

← LinearRankedSearch(efvsqmi
, Fvs[IDR])

17: Resmi
← Sort(Resmi

)

18: Res← FusionRank({IDmi
, Resmi

}n
i=0, k)

19: return {IDpi
, Rep[IDpi

], Res[IDpi
]}k

i=0

eration. OpenSSL 1.0.2 [51] and OpenCV 2.4.10 [31] were
compiled for Android integration and support MIE’s user-side
cryptographic and image retrieval computations, respectively
(all remaining computations, including text feature-extraction,
were implemented by us).

On the server side we use an index per modality, for each
repository (as previously discussed in MIE’s design). Both for
text and image data, the inverted index [43] approach is used,
where each index key represents a distinct keyword and index
values compose a list of all object identifiers containing the
keyword. Since this type of index was originally designed for
text data, we use the Bag-Of-Visual-Words (BOVW) model
as an intermediary step to represent image features as visual
words [50]. In this model, feature-vectors extracted from a
repository’s images are clustered in a machine-learning step
(MIE’s training operation), through a clustering algorithm such
as k-means [50]. This training step selects a number of repre-
sentative feature-vectors (1.000 in our experiments) which are
called visual words. After this step, when adding/updating or
searching, the different feature-vectors of the input image can
be matched with the selected visual words, and the most sim-
ilar ones are used henceforth to represent each feature-vector.
This way, the frequency of visual words in an image become
similar to the frequency of keywords in text documents. Each
visual word is given an index key, and a tree-like structure is
built over all visual words, through hierarchical k-means [50],
in order to improve visual word comparison performance (we
use a visual-words tree of height 3 and width 10).

To further improve scalability, if an index (of any modality)

220

grows too large to fit in the cloud server’s main memory,
champion posting lists [43] are used to ensure that only the top
ranked data-objects for each index entry are kept in memory,
while the full index is stored in disk and periodically merged
with updated/newly added index entries. This technique im-
proves scalability without impacting retrieval precision. Again
we remark that due to the properties of MIE and DPE, only
small modifications are required for these techniques to work
in the encrypted domain (such as applying k-means over
normalized Hamming distances due to Dense-DPE properties,
instead of Euclidean distances as in its original design).

To rank search results, the TF-IDF [43] weighting function
is used both for images and text. Nonetheless more complex
functions could be used without loss of generality (e.g. BM25
[43]). Finally, to enable multimodal querying (simultaneous
search with multiple media query formats) we use the logarith-
mic inverse square rank fusion approach [46]. This approach
allows us to separately search in the different modalities and
then merge all obtained results into the final set of multimodal
results, according to the rankings in each modality.

Training and k-means computations in the cloud side are
done using OpenCV 2.4.10, and all other computations (in-
cluding indexing and searching) were implemented by us.
Once again we remark that the prototype described is one
of many information retrieval combinations made possible by
MIE’s design, and should be seen as a reference implemen-
tation. To showcase the potential of our framework, we also
implemented a simple Android and desktop applications which
exercise all operations provided by MIE.

VII. EXPERIMENTAL EVALUATION

In this section we experimentally evaluate MIE, through the
prototype implementation described in the previous section.
For experimental baseline comparison, we also extended a
recent SSE scheme from the literature [10] to support ranked
multimodal querying and implemented two variants: one that is
a simple extension of its mechanisms and hence leaks search,
access, and frequency patterns; and another where the user
encrypts the index with an additively-homomorphic encryption
scheme [52], protecting frequency patterns when performing
queries. We refer to these schemes as MSSE and Hom-MSSE,
respectively, and their full implementation details can be found
in our companion technical report [19].
Experimental Test-Bench In the following we will present
perfomance results for the MIE, MSSE, and Hom-MSSE
alternatives, comparing results both from Desktop and Mobile
clients and analyzing them to the grain of each sub-operation.
As Mobile client device we used a 2013 Nexus 7 Android
Tablet, equipped with a Qualcomm Snapdragon S4 Pro quad-
core 1.5Ghz CPU, 2 GB RAM running Android Lolipop
5.1.0. As Desktop client we used a Macbook Pro with Mac
OS X 10.11, 4GB of RAM, and 2.3Ghz quad-core Core
i7 CPU. For the Cloud server, we used an Amazon EC2
m3.large instance, where the average round-trip time for client-
server communications is 52.160 ms. In these experiments,
the mobile client is connected to the Internet through WIFI

Fig. 2: Performance of the update operation in a mobile device

Fig. 3: Performance of the update operation in a desktop device

802.11g and the Desktop Client through an ethernet cable (100
mb/s). As dataset we used the MIR-Flickr dataset [29], which
contains one million images and their user defined textual tags
extracted from the Flickr social network.
Experimental Evaluation Roadmap The goal of our exper-
imental work is to answer the following questions: i) what
are the implications on user perceived performance (i.e, time
consumed by user devices) to process and upload multimodal
data to a cloud infrastructure, considering different devices
(mobile and desktop) and how performance evolves as we
scale the size of the data set in a scenario where a single
user is accessing the repository (§VII-A)? ii) As MIE was
designed to support multiple users and facilitate concurrent
accesses to repositories, what are the implication on user
perceived latency when two clients concurrently add objects to
the same repository (§VII-B)? iii) What is the user perceived
performance associated with searching a repository using MIE
and the concurrent schemes (§VII-C)? iv) What is the retrieval
precision obtained by MIE, in comparison with the concurrent
schemes and with plaintext retrieval (§VII-D)? And finally,
v) what are the implications of the different schemes on
the battery life of mobile devices when users upload new
multimodal content to a repository, and how this varies as
dataset sizes grow (§VII-E)?

A. Single User Scenario
Figures 2 and 3 report the results for the time consumed

by respectively, a client executing in a mobile device and in a
desktop computer, when initializing a repository and uploading
a variable number of multimodal data objects (varying from
1, 000 to 3, 000). Notice that the y-axis in these figures is
presented in a logarithmic scale for improved readability. Re-

221

sults are divided between sub-operations: Encrypt represents
the performance of encryption operations in the three schemes;
Network represents the time spent with communications and
uploading data to the cloud server; Index is the time spent by
the client extracting multimodal feature-vectors and indexing
them; Train is the performance of the training operation, where
machine learning tasks are performed; Total represents the sum
of all sub-operations.

We start by noting that when compared with MSSE and
Hom-MSSE, the client that leverages MIE (both in desktop
and mobile devices) does not consume any time on the training
operation. This is due to MIE’s ability to offload this heavy
computational step to the cloud in a secure way.

Furthermore the time spent on indexing by MIE clients
is lower when compared with MSSE and Hom-MSSE. In
this step MIE clients only have to extract feature-vectors
from the plaintext data-objects in the different modalities. By
encrypting those feature-vectors with our Distance-Preserving
schemes (DPE), all other indexing computations are securely
offload to the cloud server. In contrast, MSSE and Hom-MSSE
clients have to perform those operations in their devices, which
include: clustering feature-vectors against the training data-
structures obtained during the training step (for dense media
types); and indexing those feature-vectors (or their clustered
versions), storing the results in encrypted indexing structures
which are then uploaded to the cloud.

In the Encryption sub-operation, Hom-MSSE clients ex-
hibit the worst performance due to the use of additively-
homomorphic encryption. MIE clients waste more time than
MSSE in this sub-operation, as DPE is more expensive than
the standard cryptographic primitives used in MSSE, and in
the Networking sub-operation MIE clients also show worse
performance than the competing schemes, as MIE clients have
to upload encoded feature-vectors to the cloud while MSSE
and Hom-MSSE only have to upload the already processed
and encrypted indexing structures. However, and even if we
dismiss the cost of the training operation, MIE clients still
show lower total execution time than MSEE and Hom-MSSE
clients. The average performance cost increase from MIE to
MSEE and Hom-MSSE, considering the three datasets and
dismissing training costs, is around 9% and 203% respectively.

Concerning the observed performance across different de-
vices (mobile vs desktop), the relative time spent on each op-
eration for each of the evaluated schemes remains mostly un-
changed. However, and as expected, CPU intensive operations
such as encryption, indexing, and training perform faster on
the desktop computer (approximately 1 order of magnitude).
This is explained by the difference in CPU power available
in each device. Nonetheless, in both devices and across all
data set sizes, MIE allows more efficient processing and
storage of multimodal data than the competing alternatives.
Consequently, MIE also allows users to initialize and load a
secure cloud-backed repository with searchable capabilities in
much less time than the competing alternatives (by one order
of magnitude approximately). This shows the effectiveness of
our alternative, which is able to outsource heavy computational

Fig. 4: Multiple client simultaneous update performance, with 1 mobile and
1 desktop client where each upload 1, 000 data-objects

Fig. 5: Performance of the search operation for Mobile and Desktop

steps to the cloud by exposing at create/update time the same
information patterns that the remaining alternatives leak when
executing search operations.

B. Multiple Users Scenario
We next conducted an experiment where two clients, one

executing in a desktop computer and the other on a mobile
device, process and upload 1, 000 multimodal data objects
each to a single cloud-backed repository. In this experiment
we only evaluated the MIE approach, since MSSE and Hom-
MSSE (as well as previous SSE schemes [10]) are not easily
extendable to multiple users, as they require client-storage
that must be consistently synchronized between all users of
a repository3. Our MIE approach requires no client storage
and was designed to enable concurrent write access to data
repositories, hence both clients in the experiment can progress
at the same time.

Figure 4 summarizes the results for both clients. The figure
shows that when compared with the results of the previous sub-
sections, both clients are able to make independent progress
and both consume the same amount of time when storing a
dataset composed of 1, 000 multimodal objects.

C. Query Performance
Figure 5 reports the total time required by a client (either

on a desktop computer or a mobile device) to perform a query
on a repository with 1, 000 multimodal objects and obtain an
answer from the cloud infrastructure. In this experiment, since
searching is a synchronous operation (contrary to the previous

3SSE schemes could use some form of strongly consistent distributed
storage in order to keep client state synchronized between users, however
such an approach, especially on mobile devices, would increase performance
and bandwidth overheads even further.

222

Plaintext MSSE Hom-MSSE MIE

mAP (%) 57.938 57.965 57.881 57.562

TABLE II: Mean Average Precision (mAP) for the Holidays dataset [32]

operations that were asynchronous), the Network sub-operation
contemplates the time spent on communications with the cloud
servers and the time the cloud servers take to respond to the
query. The results show that in both devices MIE out-performs
significantly the competing solutions MSSE and Hom-MSSE.
The reasons that explain this are two-fold. First, MIE was
designed to only extract feature-vectors from the multimodal
object used as query, while the other approaches also have
to cluster these feature-vectors with the output of the training
task, in order to determine the index positions that should be
accessed by the cloud servers. The effect of this is shown in the
Index sub-operation. Second, MIE requires less computational
effort in the cloud servers than the MSSE and Hom-MSSE
approaches, which is shown in the Network sub-operation.
As expected, on mobile devices all solutions take more time
than in the desktop computer to process and fetch relevant
information for a query, however the increase is proportional
across the different schemes.

These results clearly show that not only MIE is more
performant than MSSE and Hom-MSSE, but it is also well
suited for mobile devices when storing multimodal data on
a public cloud infrastructure and when performing queries to
retrieve data objects.

D. Query Precision
Dense-DPE, used in the encryption of dense feature-vectors

(e.g. those extracted from images), is the only MIE component
that may possibly introduce entropy for retrieval operations,
affecting query results. As such, we assessed the retrieval
precision obtained by MIE and the competing alternatives
when querying an image-only repository. This evaluation was
performed using the Inria Holidays dataset and its evaluation
package [32], measuring the mean average precision (mAP) of
500 queries over a repository of 1491 photos. Table II shows an
average of 10 independent executions for MIE, the competing
alternatives MSSE and Hom-MSSE, and a plaintext retrieval
system based on the same image retrieval techniques.

All assessed systems obtained similar retrieval precision
results. Dense-DPE (in MIE) does not meaningfully affect
retrieval precision as long as encoded features are at least
as large their plaintext versions. Homomorphic encryption
(in Hom-MSSE) also seems to preserve the precision of the
retrieval algorithms. Finally, we believe that the result of the
training operation may have a more meaningful impact on
retrieval precision than any other component in the framework
system, as clustering is a NP-Hard problem and only an
approximated solution can be found [28].

E. Mobile Energy Consumption
As one of our goals is to provide adequate support to

mobile devices, it is relevant to measure the draining of
energy from a mobile device battery when creating a cloud-
based repository and loading it with 1, 000, 2, 000, or 3, 000
multimodal objects. We also report the energy required to

Fig. 6: Mobile energy consumption for the different operations

train the repository using machine learning techniques, which
is required by the MSSE and Hom-MSSE solutions. For
improved readability, the results for training and adding the
three datasets are shown in separate. The measured energy
capacity of the battery in the mobile device used in these
experiments was 3, 448mAh. Figure 6 reports the obtained
results, which were measured through Android’s Operating
System Power Profiles Framework [25]. This framework al-
lows users to verify in a precise and hardware-backed way
how much energy is consumed in a given period of time by
the different applications running in the system.

Results show that MIE significantly outperforms the re-
maining schemes. This is a reflection of the results shown
in the previous sub-sections, and further proves that MIE is
more lightweight and better suited for mobile adoption than
the state of the art alternatives. For the 2, 000 and 3, 000
dataset sizes, the Hom-MSSE scheme surpassed the available
energy capacity, causing the mobile device to shutdown before
completion of the test. Furthermore, as shown in Figure 6, MIE
is also able to avoid the train operation which almost depletes
the energy of the mobile device on its own. These results show
that MIE is effectively the solution which is best tailored for
operation on mobile devices with limited energy life.

VIII. CONCLUSION

In this paper we have tackled the practical challenges of effi-
cient and dynamic storage and search of encrypted multimodal
data on public clouds, while supporting resource constrained
mobile devices. Our main contribution, named Multmimodal
Indexable Encryption (MIE), is the first approach to address
this problem, and is particularly suited for practical contexts
and mobile devices. At the core of MIE lies a novel family
of encoding algorithms, called Distance Preserving Encoding
(DPE), which preserve a controllable distance function be-
tween plaintexts after encoding. By leveraging DPE, MIE is
able to outsource indexing and training computations (shown
to be the core of heaviest computations) from the mobile
devices to the cloud servers in a secure way. We have imple-
mented a prototype of MIE, operating both on desktop com-
puters and Android mobile devices. Our prototype supports
both textual and image modalities. We have experimentally
shown that MIE is more adequate than other approaches for
storing and searching encrypted multimodal data, especially

223

when client applications are executed in resource constrained
mobile devices.

ACKNOWLEDGMENTS

The authors thank Miguel Correia for helpful comments and
feedback. This work was supported by FCT/MCTES through
project NOVA LINCS (UID/CEC/04516/2013) and the EU,
through project LightKone (grant agreement no 732505).

REFERENCES

[1] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic
Subspace Clustering of High Dimensional Data for Data Mining Appli-
cations. In SIGMOD’98, pages 94–105, 1998.

[2] F. Baldimtsi and O. Ohrimenko. Sorting and Searching Behind the
Curtain. In FC’15, 2015.

[3] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded Up Robust
Features. In ECCV’06, pages 404–417. Springer, 2006.

[4] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa. DepSKY:
Dependable and Secure Storage in a Cloud-of-Clouds. ACM Transac-
tions on Storage, 9(4), 2013.

[5] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key
encryption with keyword search. In Eurocrypt 2004, pages 506–522.
Springer, 2004.

[6] R. Bost. Sophos - Forward Secure Searchable Encryption. In CCS’16.
ACM, 2016.

[7] P. Boufounos and S. Rane. Secure binary embeddings for privacy
preserving nearest neighbors. In IEEE International Workshop on
Information Forensics and Security, pages 1–6. Ieee, nov 2011.

[8] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-Preserving Multi-
Keyword Ranked Search over Encrypted Cloud Data. IEEE Transactions
on Parallel and Distribibuted Systems, 25(1):222–233, 2014.

[9] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-Abuse Attacks
Against Searchable Encryption. In CCS’15, pages 668–679. ACM, 2015.

[10] D. Cash, J. Jaeger, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and
M. Steiner. Dynamic searchable encryption in very-large databases:
Data structures and implementation. In NDSS’14, volume 14, 2014.

[11] A. Chen. GCreep: Google Engineer Stalked Teens, Spied on Chats.
http://gawker.com/5637234, 2010.

[12] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,
and J. Molina. Controlling data in the cloud: outsourcing computation
without outsourcing control. In CCSW’09, 2009.

[13] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2016 – 2021. https://tinyurl.com/zzo6766, 2017.

[14] ComScore. The 2016 U.S. Mobile App Report. Technical report, 2016.
[15] T. Cook. A Message to Our Customers. Apple. https://www.apple.com/

customer-letter/, 2016.
[16] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable Sym-

metric Encryption: Improved Definitions and Efficient Constructions. In
CCS’06, pages 79–88, 2006.

[17] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image retrieval. ACM
Computing Surveys, 40(2):1–60, 2008.

[18] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mobile
cloud computing: architecture, applications, and approaches. Wireless
communications and mobile computing, 13(18):1587–1611, 2013.

[19] B. Ferreira, J. Leitão, and H. Domingos. Multimodal Indexable Encryp-
tion for Mobile Cloud-based Applications (Extended Version). Technical
Report. Available at: http://asc.di.fct.unl.pt/%7Ebf/MIE.pdf, 2016.

[20] B. Ferreira, J. Rodrigues, J. Leitão, and H. Domingos. Privacy-
Preserving Content-Based Image Retrieval in the Cloud. In SRDS’15.
IEEE, 2015.

[21] T. Frieden. VA will pay $20 million to settle lawsuit over stolen laptop’s
data. http://tinyurl.com/lg4os9m, 2009.

[22] B. Fung. In 5 years, 80 percent of the whole Internet will be online
video. http://tinyurl.com/jxod8kf, 2015.

[23] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the
AES circuit. In CRYPTO’12, pages 850–867. Springer, 2012.

[24] S. Goldwasser and Y. T. Kalai. Cryptographic Assumptions: A Position
Paper. Cryptology ePrint Archive, Report 2015/907, 2015.

[25] Google. Power Profiles for Android. https://source.android.com/devices/
tech/power/index.html.

[26] G. Greenwald and E. MacAskill. NSA Prism program taps in to user
data of Apple, Google and others. http://tinyurl.com/oea3g8t, 2013.

[27] F. Hahn and F. Kerschbaum. Searchable Encryption with Secure and
Efficient Updates. In CCS’14, pages 310–320. ACM, 2014.

[28] J. A. Hartigan. Clustering algorithms. Wiley, 1975.
[29] M. J. Huiskes and M. S. Lew. The MIR Flickr Retrieval Evaluation. In

MIR ’08, New York, NY, USA, 2008. ACM.
[30] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure

on searchable encryption: Ramification, attack and mitigation. In NDSS,
2012.

[31] Itseez. OpenCV: Open Source Computer Vision. http://opencv.org.
[32] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak

geometric consistency for large scale image search. In Computer Vision-
ECCV, pages 304–317. Springer, 2008.

[33] A. Juels and M. Wattenberg. A Fuzzy Commitment Scheme. CCS ’99,
pages 28–36, 1999.

[34] S. Kamara and C. Papamanthou. Parallel and dynamic searchable
symmetric encryption. FC’13, pages 1–15, 2013.

[35] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable
symmetric encryption. In CCS’12, pages 965–976. ACM, 2012.

[36] J. Katz and Y. Lindell. Introduction to Modern Cryptography. CRC
PRESS, 2007.

[37] S. Khalaf. Health and Fitness Apps Finally Take Off, Fueled by Fitness
Fanatics. http://tinyurl.com/q4wyl7j, 2014.

[38] B. H. Kim and D. Lie. Caelus: Verifying the Consistency of Cloud
Services with Battery-Powered Devices. S&P’15, 2015.

[39] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In CVPR’06,
volume 2, pages 2169–2178. IEEE, 2006.

[40] D. Lewis. iCloud Data Breach: Hacking And Celebrity Photos. https:
//tinyurl.com/nohznmr, 2014.

[41] W. Lu, A. Swaminathan, A. L. Varna, and M. Wu. Enabling Search over
Encrypted Multimedia Databases. In IS&T/SPIE Electronic Imaging,
pages 725418–725418–11, feb 2009.

[42] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish. Depot: Cloud Storage with Minimal Trust. ACM
Transactions on Computer Systems, 29(4):1–38, dec 2011.

[43] C. D. Manning, P. Raghavan, and H. Schütze. An Introduction to
Information Retrieval, volume 1. Cambridge University Press, 2009.

[44] M. Meeker. Internet Trends 2015. In Code Conference, 2015.
[45] Microsoft. HealthVault. https://www.healthvault.com/, 2016.
[46] A. Mourão, F. Martins, and J. Magalhães. NovaSearch at TREC 2013

Federated Web Search Track : Experiments with rank fusion. In TREC,
number Task 1, pages 1–8, 2013.

[47] A. Mourão, F. Martins, and J. Magalhães. Multimodal medical infor-
mation retrieval with unsupervised rank fusion. Computerized Medical
Imaging and Graphics, may 2014.

[48] M. Naveed. The Fallacy of Composition of Oblivious RAM and
Searchable Encryption. Technical report, Cryptology ePrint Archive,
Report 2015/668, 2015.

[49] M. Naveed, M. Prabhakaran, and C. A. Gunter. Dynamic Searchable
Encryption via Blind Storage. In IEEE S&P, 2014.

[50] D. Nistér, H. Stewénius, D. Nister, and H. Stewenius. Scalable
recognition with a vocabulary tree. In IEEE CVPR’06, volume 2, pages
2161–2168. IEEE, 2006.

[51] OpenSSL Software Foundation. OpenSSL: Cryptography and SSL/TLS
Toolkit. https://www.openssl.org.

[52] P. Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In EUROCRYPT’99, pages 223–238, 1999.

[53] R. A. Popa, E. Stark, J. Helfer, and S. Valdez. Building web applications
on top of encrypted data using Mylar. In NSDI’14, 2014.

[54] D. Rushe. Google: don’t expect privacy when sending to Gmail. http:
//tinyurl.com/kjga34x, 2013.

[55] E. Stefanov, C. Papamanthou, and E. Shi. Practical Dynamic Searchable
Encryption with Small Leakage. In NDSS’14, 2014.

[56] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, S. Devadas,
M. V. Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path
oram: An extremely simple oblivious ram protocol. CCS’13, 2013.

[57] C. Wang, N. Cao, K. Ren, and W. Lou. Enabling Secure and Efficient
Ranked Keyword Search over Outsourced Cloud Data. IEEE Transac-
tions on Parallel and Distributed Systems, 23(8):1467–1479, aug 2012.

[58] Y. Zhang, J. Katz, and C. Papamanthou. All Your Queries Are Belong
to Us: The Power of File-Injection Attacks on Searchable Encryption.
In Usenix Security ’16, 2016.

224

Testing properties of weakly consistent programs with Repliss
Peter Zeller

TU Kaiserslautern, Germany
p_zeller@cs.uni-kl.de

ABSTRACT
Repliss is a tool for the veri�cation of programs which are built
on top of weakly consistent databases. As one part of Repliss, we
have built an automated, property based testing engine. It explores
executions of a given application with randomized invocations and
scheduling while checking for invariant violations. When an in-
variant is broken, Repliss minimizes the execution and displays a
visualization of the minimized failing execution. Our contributions
are 1. heuristics used to quickly �nd invariant violations, 2. a strat-
egy to shrink executions, and 3. integrating a testing approach with
the overall Repliss tool.

CCS CONCEPTS
• Information systems → Inconsistent data; • Software and
its engineering → Consistency; Software testing and debug-
ging;

KEYWORDS
Property-based Testing, Weak Consistency
ACM Reference format:
Peter Zeller. 2017. Testing properties of weakly consistent programs with
Repliss. In Proceedings of PaPoC’17, Belgrade, Serbia, April 23, 2017, 5 pages.
DOI: http://dx.doi.org/10.1145/3064889.3064893

1 BACKGROUND: REPLISS
Repliss is a tool for verifying and testing code interacting with
weakly consistent databases. A Repliss program consists of a set
of procedures and a de�nition of the database schema with rele-
vant type de�nitions. Repliss procedures are supposed to provide
high-level operations on the persistent data of the application to
clients. They are implemented in a simple, imperative language
which includes an atomic-statement to execute a block of opera-
tions in a database transaction. Procedures are called by clients and
run concurrently, possibly on di�erent servers and connected to dif-
ferent replicas of a shared database. For simplicity, we assume that
procedures are only called by clients and not by other procedures
of the program.

The database schema of a Repliss program is given by a set of
query- and update-operations on CRDT-objects [14]. The result
of queries is speci�ed using �rst order logical formulas over the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’17, Belgrade, Serbia
© 2017 ACM. 978-1-4503-4933-8/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3064889.3064893

history of operations. This is very �exible and allows to use any
CRDT, whose speci�cation can be expressed in the logic.

Users can express properties about the behavior of a Repliss
program using �rst order formulas. These formulas can use the
queries de�ned on the datatypes to express data invariants, but they
can also address the history of database operations and procedure
invocations to specify temporal properties (as used by the userbase
example in Section 2).

From the program and the speci�ed properties, Repliss can de-
rive veri�cation conditions. We use Why3 [9] as the veri�cation
backend, so we can use automated theorem provers like Z3 [8] to
discharge the veri�cation conditions and thereby prove the pro-
gram correct automatically. For complex problems, it is possible to
export the veri�cation conditions to Isabelle/HOL [13] and prove
them manually. The latter can also give interesting insights into
why an automated proof attempt failed, however it requires a lot
of manual e�ort. Most often, users will �rst specify some desired
properties, run Repliss and �nd that it fails to verify the property
automatically. This is either, because there is a bug in the program
as the user did not anticipate all possible concurrent interactions.
However, it can also happen that additional invariants are required
to complete the automated proof, or that the automated prover is
not powerful enough.

To aid the programmer in localizing the issue, we extended
Repliss with an automated testing tool. Testing can quickly reveal
bugs in the program or speci�cation by giving counter examples.
However, it cannot �nd counterexamples for failed veri�cation at-
tempts of a correct program. Our tool works similar to tools like
QuickCheck [5], which means that no additional inputs need to
be given by the user and that the tool can automatically shrink
counter examples to present them in a (locally) minimal form.

There are existing approaches to use QuickCheck for testing
concurrent code. Pulse [6] is a custom scheduler, which explores
di�erent schedules at the level of Erlang processes. Our approach
only considers the relevant nondeterminism which reduces the
space of possible executions. Gambit [7] is another testing tool,
which explores low-level schedules. It uses heuristics which are
mainly based on partial order reduction, which do not apply to our
setting, since we do not use linear executions.

For testing weakly consistent programs, there are surprisingly
few tools. Net�ix described using a tool named Chaos Monkey [3], a
tool which injects network faults at runtime to test the robustness of
the application. A more systematic approach is Chapar [12], which
includes a bounded model checker for weakly consistent programs.
In contrast to our work, it can enumerate all possible schedules, but
it only checks small executions with given parameters, whereas we
explore di�erent parameters and executions automatically.

PaPoC’17, April 23, 2017, Belgrade, Serbia Peter Zeller

2 EXAMPLES
In this section we use two examples to demonstrate, how our testing
tool can be used to �nd bugs. Figure 1 shows an example program
implementing a database of users. The function registerUser creates
a new user account with the given data and returns the unique
identi�er of the newly created user. To update the mail address
of a user with a given identi�er, there is a function updateMail. To
remove a user from the system, removeUser can be called. The data
of a user can be retrieved via getUser, which returns a record with
the name and the email address of a given user, or not_found when
the user does not exist.

The database schema is given by de�ning the available opera-
tions and queries on the database and by choosing a semantics for
the query operations (not shown here). The example employs a
map data structure with operations mapWrite and mapDelete to store
the users. The mapWrite operation takes two keys, the UserId and a
�eld name (f_name or f_mail). Choosing a suitable CRDT semantics is
essential for the correctness of the application. The userbase exam-
ple only works correctly if mapDelete a�ects all prior and concurrent
mapWrite operations, so a delete-wins map CRDT can be used.

For this application, we want to verify that calling getUser(u) after
removeUser(u) for a user with unique identi�er u returns notFound. We
can specify this with the following invariant:
invariant forall r: invocationId, g: invocationId, u: UserId ::

r.info == removeUser(u)

&& g.info == getUser(u)

&& r happened before g

==> g.result == getUser_res(notFound())

This property can be veri�ed by Repliss in one second1. The
random test executor does not �nd a counter example and needs
2 seconds for executing 100 actions, 6 seconds for 200 action, 40
seconds for 400 actions and 240 seconds for 800 actions. In this
example one invocation on average consists of roughly 4 actions.
The numbers show that the executor does not scale well for long
executions. This is mainly because of the straight forward eval-
uation strategy we are using at the moment. We can avoid this
scalability problem, by running multiple shorter executions with
di�erent random seeds instead of running long executions.

When we introduce a bug by removing the atomic block in the
updateMail procedure, our automatic testing tool �nds the counter
example shown in Figure 2. The graph is automatically generated
for the Repliss web interface2. A failing example with 19 invocations
is found after 600ms and reduced to the shown example with only
4 invocations in 2600ms. The outer boxes in the visualizations
represent invocations. Each invocation can contain several boxes
representing transactions and each transaction can again contain
several calls to the database. The causal dependencies between
database calls are denoted by arrows. As shown in Figure 2, the
invariant can be violated, when a concurrent mapDelete call becomes
visible before the second database call in updateMail.

When we reintroduce the atomic block and use an add-wins
instead of a remove-wins CRDT, the testing tool also �nds the
bug and displays the counter example in Figure 3. In this case the
problem is found after 300ms and 12 invocations and then reduced
1All tests were executed on a laptop with 16Gb of RAM, i5-5500U processor, Ubuntu
16.04, Scala 2.11, Java OpenJDK-8, Why3-0.87.2, and Z3 4.5.1
2The Repliss web interface is available under https://softech.cs.uni-kl.de/repliss/

def registerUser(name: String, mail: String): UserId

var u: UserId

u = new UserId

atomic

call mapWrite(u, f_name(), name)

call mapWrite(u, f_mail(), mail)

return u

def updateMail(id: UserId, newMail: String)

var uExists: boolean

atomic

uExists = mapExists(id)

if (uExists)

call mapWrite(id, f_mail(), newMail)

def removeUser(id: UserId)

call mapDelete(id)

def getUser(id: UserId): getUserResult

atomic

if (mapExists(id))

return found(mapGet(id, f_name()), mapGet(id, f_mail()))

else

return notFound()

Figure 1: Userbase Example: Procedures

to 4 invocations in 2100ms. The example executions use “???” as a
dummy result for calls to mapGet. We underspeci�ed the mapGet query,
since it is not important for this example, yet it is still possible to
execute tests.

Example 2: Set size. To challenge our testing tool, we ran it on
the arti�cial example shown in Figure 4. The example consists of
one procedure, which would ensure that at most one element is
contained in the set if the code was executed in a sequential setting.
We speci�ed that the cardinality of the set is always less than 3. This
means that a counterexample requires at least 3 parallel invocations
with di�erent elements and one action to merge the three states.
Repliss was able to �nd an example with 6 invocations in 200ms and
reduced it to the example in Figure 5 in 2000ms. This example also
shows a limitation of our approach: A set size of n would require to
have at least n di�erent elements in the domain, however we only
use a �xed number of values in tests (see Section 4).

3 SYSTEM MODEL
Repliss assumes that a database with transactional causal+ consis-
tency like Antidote [2] is used by the application. The formalization
of the semantics is similar to formalizations used by Gotsman et
al. [4, 11], but we describe it operationally, corresponding to our
implementation. In particular, our semantics are deterministic for a
given trace of actions and stable under removal of actions, which
enables e�cient shrinking of counter examples (see Section 5). The
system state is modeled by the following components:
calls: Map[CallId, CallInfo]

transactions: Map[TransactionId, TransactionInfo]

invocations: Map[InvocationId, InvocationInfo]

knownIds: Map[IdType, Set[AnyValue]]

localStates: Map[InvocationId, LocalState]

All calls to the database (queries and update operations) are
stored in calls. Each call has information about its operation, causal
dependencies, originating transaction and origination procedure
invocation. Information about transactions is stored in transactions.

Testing properties of weakly consistent programs with Repliss PaPoC’17, April 23, 2017, Belgrade, Serbia

invoc_1
 registerUser(String_1, String_0)

 result: registerUser_res(UserId_1)

tx_1

invoc_6
 removeUser(UserId_1)

 result: -

tx_8

invoc_12
 updateMail(UserId_1, String_1)

 result: -

tx_15

tx_16

invoc_15
 getUser(UserId_1)

 result: getUser_res(found(???, ???))

tx_18

call_1
mapWrite(UserId_1, f_name(), String_1)

call_2
mapWrite(UserId_1, f_mail(), String_0)

call_3
mapDelete(UserId_1)

call_4
mapExists(UserId_1)

result: true

call_5
mapWrite(UserId_1, f_mail(), String_1)

call_6
mapExists(UserId_1)

result: true

call_7
mapGet(UserId_1, f_name())

result: ???

call_8
mapGet(UserId_1, f_mail())

result: ???

Figure 2: Counter example with missing transaction.

Each transaction stores information about the calls visible to the
transactions (the transaction snapshot), the originating invocation,
the calls executed inside the transaction and a �ag stating whether
the transaction was already committed. All invocations of proce-
dures in the Repliss program are stored in invocations. For each
invocation we store the called procedure and given arguments and
for completed procedures also the returned value. Repliss contains
a special class of types, which represent unique identi�ers. These
are called IdType and can only be generated by the system, so clients
can only use a value of such a type after it has been returned by
some previous procedure invocation. Therefore, we keep track of
the identi�ers known to clients in knownIds. Finally, each invocation
has a local state stored in localStates. A local state consists of the
following components:
varValues: Map[LocalVar, AnyValue]

todo: List[StatementOrAction]

waitingFor: LocalWaitingFor

currentTransaction: Option[TransactionInfo]

visibleCalls: Set[CallId]

The varValues map contains the current values of the local vari-
ables. The todo List represents a continuation consisting of the
statements or actions which still have to be executed. When the
execution of a procedure is suspended, the waitingFor �eld is describ-
ing the condition on which the execution is waiting. Additionally,

invoc_1
 registerUser(String_1, String_0)

 result: registerUser_res(UserId_1)

tx_1

invoc_6
 removeUser(UserId_1)

 result: -

tx_6

invoc_11
 updateMail(UserId_1, String_2)

 result: -

tx_11

invoc_12
 getUser(UserId_1)

 result: getUser_res(found(???, ???))

tx_12

call_1
mapWrite(UserId_1, f_name(), String_1)

call_2
mapWrite(UserId_1, f_mail(), String_0)

call_3
mapDelete(UserId_1)

call_4
mapExists(UserId_1)

result: true

call_6
mapExists(UserId_1)

result: true

call_5
mapWrite(UserId_1, f_mail(), String_2)

call_7
mapGet(UserId_1, f_name())

result: ???

call_8
mapGet(UserId_1, f_mail())

result: ???

Figure 3: Counter example with wrong CRDT.

def store(e: Element) {

atomic {

if (elementSet_isEmpty()) {

call elementSet_add(e)

}

}

}

Figure 4: Example with restricted set size

invoc_1
 store(Element_0)

 result: -

tx_1

invoc_2
 store(Element_1)

 result: -

tx_2

invoc_3
 store(Element_2)

 result: -

tx_3

invoc_6
 store(Element_2)

 result: -

tx_6

call_1
elementSet_isEmpty()

result: true

call_2
elementSet_add(Element_0)

call_7
elementSet_isEmpty()

result: false

call_4
elementSet_add(Element_1)

call_3
elementSet_isEmpty()

result: true

call_6
elementSet_add(Element_2)

call_5
elementSet_isEmpty()

result: true

Figure 5: Counter example with 3 elements in the set.

the current transaction and the set of locally visible calls are stored
in the local state.

PaPoC’17, April 23, 2017, Belgrade, Serbia Peter Zeller

An execution always starts in the initial state, where all maps
are empty. This ensures, that we only reach database states that are
reachable in practice.

To model concurrent executions, we allow suspending the execu-
tion of a local procedure at certain points, which could be observed
by other concurrent invocations. We also suspend the execution at
other points of nondeterministic decisions, so that these decisions
can be delegated to the test executor. After reaching a suspended
state on one invocation, the system can perform one of the follow-
ing actions:

CallAction(procname: String, args: List[AnyValue])

StartTransaction(newTransactionId: TransactionId,

pulledTransaction: Set[TransactionId])

NewId(id: Int)

Fail()

Return()

InvariantCheck()

In addition to the arguments shown here, each action also in-
cludes an invocation-identi�er. A CallAction simply starts a new
invocation of the given procedure with the given arguments and
executes the procedure until it reaches the �rst suspension point.
This is either a start of a new transaction (we transform the pro-
gram, so that every database call is executed in a transaction), a
statement to create a new unique identi�er, or a return-statement. A
transaction is started with the StartTransaction action, which gives
the new transaction the newTransactionId. Transactions work on a
snapshot, which is determined by the locally visible calls at the start
of the transaction. When a transaction is started, the calls from the
completed pulledTransactions are pulled into the locally visible calls
by adding them to the set of already visible calls. In addition, all
causal dependencies of the newly pulled calls are added as well.
This ensures, that the snapshot is causally consistent and adheres
to the atomic visibility of transactions. Dependencies of database
calls are recorded when a call is performed. Then all calls, which
are locally visible, are added to the dependencies of the new call.
This means, that our model tracks causality globally and not just
per object.

The other actions are straightforward: Fail simulates a local
crash by terminating an invocation without completing it. Return
completes an invocation and stores the return-value. InvariantCheck
checks the invariant and does not change the state.

3.1 Executing Speci�cations
One problem in executing the system model described above, is that
it requires evaluating �rst order logical formulas for checking prop-
erties and for determining the results of database queries, which
can also be speci�ed by the user. As we only consider �nite execu-
tions, we only have to evaluate formulas in �nite models. Therefore,
we can evaluate universal and existential quanti�ers by checking
them for all possible objects. This evaluation strategy is expensive,
but by limiting the domain of types and by using short-circuiting
evaluation, this approach is usable for the example we tested it
on. Still, it is the major performance bottleneck in the current im-
plementation, so future work will have to focus on improving the
evaluation strategy. In the current implementation, we avoided
the performance problems, by not checking the invariant in every

step. Instead we introduced the InvariantCheck action, which is only
executed occasionally.

4 HEURISTICS FOR FINDING BUGS
Our �rst (naive) approach of randomly exploring the space of con-
current executions failed to �nd invariant violations for our exam-
ples. We had to introduce heuristics to guide the search towards
interesting cases of concurrency. These heuristics are a direct con-
sequence of the following observations:

(1) Bugs happen more often, when there are few objects with
many concurrent accesses.

(2) When a procedure consists of several transactions, bugs
often appear when many changes are pulled in between
transactions.

(3) Causal consistency tends to tame the chaos introduced by
randomness, so a random choice must consider causality.

(4) Most bugs can be triggered by a short sequence of actions.
Longer sequences of random actions can lead to save states,
where no bugs can appear (for example, deleted objects
and �nal state of a state-machine are often safe and cannot
become unsafe again).

Point 1 was the easiest to address. We simply limit the size of
the domain. For our examples a size of 3 values per primitive type
worked well (e.g. we only use 3 di�erent strings in executions). For
id-types, we inspect the results of procedures and when a procedure
has generated more than 3 unique identi�ers, we stop generating
new calls to the procedure.

Points 2-4 were not addressed well in our initial approach, where
we simply selected a random subset of all transactions as the set of
pulled transactions. Because all causal dependencies are included
in a pull, picking a transaction with many dependencies, pulled in
almost all transactions, which led to an almost linear history and
did not reveal many bugs. Furthermore, it was unlikely that the next
transaction in the same invocation would start on a substantially
di�erent snapshot. We addressed these issues with the following
approach: First we calculate the set of transactions, which are not
yet visible in the current invocation. Then we either pick one or
two random transactions from this set, which simulates pulling in
changes from one or two other replicas. This addresses point 2, since
we always pull in new transactions when possible (an exception
is the �rst pull in an invocation, where we allow starting from the
empty state). To address point 3 and 4, we introduced a bias towards
older transactions, so that we avoid including a big set of causal
dependencies.

5 SHRINKING COUNTER EXAMPLES
When we �nd an invariant violation, we try to shrink the execution
in order to present a small counter example to the user. An execution
is de�ned by the trace of actions, which were randomly generated
before. The trace includes all nondeterministic choices made by
the system and therefore a trace can be executed deterministically.
This property is important for replaying traces.

To allow e�cient shrinking of the trace, the execution also has to
be stable when removing some actions from the trace: this should
only have minimal e�ects on other actions. We achieve this with the
following two design decisions: First, we �x all generated identi�ers

Testing properties of weakly consistent programs with Repliss PaPoC’17, April 23, 2017, Belgrade, Serbia

in the actions of the trace, so that identi�ers are not a�ected by
removing previous actions. Then, we ensure that actions can still
be executed, even when the context has changed. For example, a
StartTransaction action can include pulled transactions, which have
already been removed and we simply ignore them. Moreover, the
set of pulled transactions stored in the action already includes all
causal dependencies, so removing one transaction has a minimal
a�ect on the overall set of pulled transactions.

When we encounter an invalid action during execution, we sim-
ply ignore it and report the invalid action to the shrinking process.
That way, we can directly remove all actions that have been invali-
dated by removing a single action. For example, when we remove
the call to a procedure that returns a new unique identi�er, this
approach removes all actions in that call, as well as all calls using
the generated identi�er.

The shrinking algorithm itself is then straightforward: We try
removing an action from the current trace, starting with the �rst
action. When the reduced trace still triggers the invariant viola-
tion, we continue shrinking the reduced trace. Otherwise we try
to remove the next action from the trace instead and continue as
above.

The outcome of this process is visualized using the GraphViz
[1, 10] tools tred (for removing transitive causality edges) and dot

for the layout of the graph. Examples of the resulting visualizations
are Figures 2, 3, and 5.

6 CONCLUSION
The addition of a testing tool to Repliss makes it easier to �nd valid
invariants. Bugs in the code or in the speci�cation can be discov-
ered directly and �xed by studying the minimized counter example
provided by the testing tool. In comparison to model checking
approaches, random testing has the bene�t of being easier to im-
plement and maintain and it has shown to be useful for improving
the usability of the Repliss tool.

In the future we plan to verify and test larger applications with
Repliss. This will show, whether our testing approach scales to
realistic examples. We expect that more complex examples will
require a more e�cient evaluation and may require some user
interaction: Similar to QuickCheck, it might be necessary to provide
custom generators if there are stronger preconditions on inputs.

Code availability
The code developed for Repliss is available at https://softech-git.
cs.uni-kl.de/zeller/repliss. The tool can also be tried using the web
interface at https://softech.cs.uni-kl.de/repliss/.

ACKNOWLEDGMENTS
I would like to thank Annette Bieniusa for useful feedback and
discussions and the anonymous reviewers for their comments.

REFERENCES
[1] Graphviz - graph visualization software. http://www.graphviz.org/. Accessed:

2017-02-16.
[2] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhongmiao Li,

Tyler Crain, Annette Bieniusa, Nuno M. Preguiça, and Marc Shapiro. Cure: Strong
semantics meets high availability and low latency. In 36th IEEE International
Conference on Distributed Computing Systems, ICDCS, 2016.

[3] Cory Bennett and Ariel Tseitlin. Chaos monkey released into the wild. http:
//techblog.net�ix.com/2012/07/chaos-monkey-released-into-wild.html, 2012. Ac-
cessed: 2017-03-12.

[4] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski.
Replicated data types: speci�cation, veri�cation, optimality. In POPL, 2014.

[5] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random test-
ing of haskell programs. In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP), 2000.

[6] Koen Claessen, Michal H. Palka, Nicholas Smallbone, John Hughes, Hans Svens-
son, Thomas Arts, and Ulf T. Wiger. Finding race conditions in erlang with
quickcheck and PULSE. In Proceeding of the 14th ACM SIGPLAN international
conference on Functional programming, ICFP, 2009.

[7] Katherine E. Coons, Sebastian Burckhardt, and Madanlal Musuvathi. GAMBIT:
e�ective unit testing for concurrency libraries. In Proceedings of the 15th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPOPP,
2010.

[8] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an e�cient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems, 14th Inter-
national Conference, TACAS, 2008.

[9] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet
provers. In Proceedings of the 22nd European Symposium on Programming, 2013.

[10] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. SOFTWARE - PRACTICE AND
EXPERIENCE, 30(11), 2000.

[11] Alexey Gotsman and Hongseok Yang. Composite replicated data types. In Pro-
gramming Languages and Systems - 24th European Symposium on Programming,
ESOP, 2015.

[12] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: certi�ed causally
consistent distributed key-value stores. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL,
2016.

[13] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[14] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types. Rapport
de recherche RR-7506, INRIA, January 2011.

Non-uniform Replication
Gonçalo Cabrita1 and Nuno Preguiça2

1 NOVA LINCS & DI, FCT, Universidade NOVA de Lisboa, Caparica, Portugal
g.cabrita@campus.fct.unl.pt

2 NOVA LINCS & DI, FCT, Universidade NOVA de Lisboa, Caparica, Portugal
nuno.preguica@fct.unl.pt

Abstract
Replication is a key technique in the design of efficient and reliable distributed systems. As
information grows, it becomes difficult or even impossible to store all information at every replica.
A common approach to deal with this problem is to rely on partial replication, where each replica
maintains only a part of the total system information. As a consequence, a remote replica might
need to be contacted for computing the reply to some given query, which leads to high latency
costs particularly in geo-replicated settings. In this work, we introduce the concept of non-
uniform replication, where each replica stores only part of the information, but where all replicas
store enough information to answer every query. We apply this concept to eventual consistency
and conflict-free replicated data types. We show that this model can address useful problems
and present two data types that solve such problems. Our evaluation shows that non-uniform
replication is more efficient than traditional replication, using less storage space and network
bandwidth.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Non-uniform Replication; Partial Replication; Replicated Data Types;
Eventual Consistency

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.0

1 Introduction

Many applications run on cloud infrastructures composed by multiple data centers, geo-
graphically distributed across the world. These applications usually store their data on
geo-replicated data stores, with replicas of data being maintained in multiple data centers.
Data management in geo-replicated settings is challenging, requiring designers to make a
number of choices to better address the requirements of applications.

One well-known trade-off is between availability and data consistency. Some data stores
provide strong consistency [5, 17], where the system gives the illusion that a single replica
exists. This requires replicas to coordinate for executing operations, with impact on the
latency and availability of these systems. Other data stores [7, 11] provide high-availability
and low latency by allowing operations to execute locally in a single data center eschewing a
linearizable consistency model. These systems receive and execute updates in a single replica
before asynchronously propagating the updates to other replicas, thus providing very low
latency.

With the increase of the number of data centers available to applications and the amount
of information maintained by applications, another trade-off is between the simplicity of
maintaining all data in all data centers and the cost of doing so. Besides sharding data
among multiple machines in each data center, it is often interesting to keep only part of
the data in each data center to reduce the costs associated with data storage and running

© Gonçalo Cabrita and Nuno Preguiça;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 0; pp. 0:1–0:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

0:2 Non-uniform Replication

protocols that involve a large number of replicas. In systems that adopt a partial replication
model [22, 25, 6], as each replica only maintains part of the data, it can only locally process
a subset of the database queries. Thus, when executing a query in a data center, it might be
necessary to contact one or more remote data centers for computing the result of the query.

In this paper we explore an alternative partial replication model, the non-uniform
replication model, where each replica maintains only part of the data but can process all
queries. The key insight is that for some data objects, not all data is necessary for providing
the result of read operations. For example, an object that keeps the top-K elements only
needs to maintain those top-K elements in every replica. However, the remaining elements
are necessary if a remove operation is available, as one of the elements not in the top needs
to be promoted when a top element is removed.

A top-K object could be used for maintaining the leaderboard in an online game. In
such system, while the information for each user only needs to be kept in the data center
closest to the user (and in one or two more for fault tolerance), it is important to keep a
replica of the leaderboard in every data center for low latency and availability. Currently,
for supporting such a feature, several designs could be adopted. First, the system could
maintain an object with the results of all players in all replicas. While simple, this approach
turns out to be needlessly expensive in both storage space and network bandwidth when
compared to our proposed model. Second, the system could move all data to a single data
center and execute the computation in that data center or use a data processing system that
can execute computations over geo-partitioned data [10]. The result would then have to be
sent to all data centers. This approach is much more complex than our proposal, and while
it might be interesting when complex machine learning computations are executed, it seems
to be an overkill in a number of situations.

We apply the non-uniform replication model to eventual consistency and Conflict-free
Replicated Data Types [23], formalizing the model for an operation-based replication approach.
We present two useful data type designs that implement such model. Our evaluation shows
that the non-uniform replication model leads to high gains in both storage space and network
bandwidth used for synchronization when compared with state-of-the-art replication based
alternatives.

In summary, this paper makes the following contributions:

The proposal of the non-uniform replication model, where each replica only keeps part of
the data but enough data to reply to every query;
The definition of non-uniform eventual consistency (NuEC), the identification of sufficient
conditions for providing NuEC and a protocol that enforces such conditions relying on
operation-based synchronization;
Two useful replicated data type designs that adopt the non-uniform replication model
(and can be generalized to use different filter functions);
An evaluation of the proposed model, showing its gains in term of storage space and
network bandwidth.

The remainder of this paper is organized as follows. Section 2 discusses the related work.
Section 3 describes the non-uniform replication model. Section 4 applies the model to an
eventual consistent system. Section 5 introduces two useful data type designs that follow the
model. Section 6 compares our proposed data types against state-of-the-art CRDTs.

G. Cabrita and N. Preguiça 0:3

2 Related Work

Replication: A large number of replication protocols have been proposed in the last
decades [8, 27, 15, 16, 2, 21, 17]. Regarding the contents of the replicas, these protocols can
be divided in those providing full replication, where each replica maintains the full database
state, and partial replication, where each replica maintains only a subset of the database
state.

Full replication strategies allow operations to concurrently modify all replicas of a system
and, assuming that replicas are mutually consistent, improves availability since clients may
query any replica in the system and obtain an immediate response. While this improves the
performance of read operations, update operations now negatively affect the performance
of the system since they must modify every replica which severely affects middle-scale to
large-scale systems in geo-distributed settings. This model also has the disadvantage of
limiting the system’s total capacity to the capacity of the node with fewest resources.

Partial replication [3, 22, 25, 6] addresses the shortcomings of full replication by having
each replica store only part of the data (which continues being replicated in more than one
node). This improves the scalability of the system but since each replica maintains only a
part of the data, it can only locally process a subset of queries. This adds complexity to the
query processing, with some queries requiring contacting multiple replicas to compute their
result. In our work we address these limitations by proposing a model where each replica
maintains only part of the data but can reply to any query.

Despite of adopting full or partial replication, replication protocols enforce strong consis-
tency [17, 5, 18], weak consistency [27, 7, 15, 16, 2] or a mix of these consistency models [24, 14].
In this paper we show how to combine non-uniform replication with eventual consistency.
An important aspect in systems that adopt eventual consistency is how the system handles
concurrent operations. CRDTs have been proposed as a technique for addressing such
challenge.

CRDTs: Conflict-free Replicated Data Types [23] are data types designed to be replicated
at multiple replicas without requiring coordination for executing operations. CRDTs encode
merge policies used to guarantee that all replicas converge to the same value after all updates
are propagated to every replica. This allows an operation to execute immediately on any
replica, with replicas synchronizing asynchronously. Thus, a system that uses CRDTs can
provide low latency and high availability, despite faults and network latency. With these
guarantees, CRDTs are a key building block for providing eventual consistency with well
defined semantics, making it easier for programmers to reason about the system evolution.

When considering the synchronization process, two main types of CRDTs have been
proposed: state-based CRDT, where replicas synchronize pairwise, by periodically exchanging
the state of the replicas; and operation-based CRDTs, where all operations need to be
propagated to all replicas.

Delta-based CRDTs [1] improve upon state-based CRDTs by reducing the dissemination
cost of updates, sending only a delta of the modified state. This is achieved by using delta-
mutators, which are functions that encode a delta of the state. Linde et. al [26] propose an
improvement to delta-based CRDTs that further reduce the data that need to be propagated
when a replica first synchronizes with some other replica. This is particularly interesting in
peer-to-peer settings, where the synchronization partners of each replica change frequently.
Although delta-based CRDTs reduce the network bandwidth used for synchronization, they
continue to maintain a full replication strategy where the state of quiescent replicas is
equivalent.

OPODIS 2017

0:4 Non-uniform Replication

Computational CRDTs [19] are an extension of state-based CRDTs where the state of the
object is the result of a computation (e.g. the average, the top-K elements) over the executed
updates. As with the model we propose in this paper, replicas do not need to have equivalent
states. The work we present in this paper extends the initial ideas proposed in computational
CRDTs in several aspects, including the definition of the non-uniform replication model, its
application to operation-based eventual consistency and the new data type designs.

3 Non-uniform replication

We consider an asynchronous distributed system composed by n nodes. Without loss of
generality, we assume that the system replicates a single object. The object has an interface
composed by a set of read-only operations, Q, and a set of update operations, U . Let S be
the set of all possible object states, the state that results from executing operation o in state
s ∈ S is denoted as s • o. For a read-only operation, q ∈ Q, s • q = s. The result of operation
o ∈ Q ∪ U in state s ∈ S is denoted as o(s) (we assume that an update operation, besides
modifying the state, can also return some result).

We denote the state of the replicated system as a tuple (s1, s2, . . . , sn), with si the state
of the replica i. The state of the replicas is synchronized by a replication protocol that
exchanges messages among the nodes of the system and updates the state of the replicas.
For now, we do not consider any specific replication protocol or strategy, as our proposal can
be applied to different replication strategies.

We say a system is in a quiescent state for a given set of executed operations if the
replication protocol has propagated all messages necessary to synchronize all replicas, i.e.,
additional messages sent by the replication protocol will not modify the state of the replicas.
In general, replication protocols try to achieve a convergence property, in which the state of
any two replicas is equivalent in a quiescent state.

I Definition 1 (Equivalent state). Two states, si and sj , are equivalent, si ≡ sj , iff the results
of the execution of any sequence of operations in both states are equal, i.e., ∀o1, . . . , on ∈
Q ∪ U , on(si • o1 • . . . • on−1) = on(sj • o1 • . . . • on−1).

This property is enforced by most replication protocols, independently of whether they
provide strong or weak consistency [13, 15, 27]. We note that this property does not require
that the internal state of the replicas is the same, but only that the replicas always return
the same results for any executed sequence of operations.

In this work, we propose to relax this property by requiring only that the execution of
read-only operations return the same value. We name this property as observable equivalence
and define it formally as follows.

I Definition 2 (Observable equivalent state). Two states, si and sj , are observable equivalent,
si

o≡ sj , iff the result of executing every read-only operation in both states is equal, i.e.,
∀o ∈ Q, o(si) = o(sj).

As read-only operations do not affect the state of a replica, the results of the execution
of any sequence of read-only operations in two observable equivalent states will also be the
same. We now define a non-uniform replication system as one that guarantees only that
replicas converge to an observable equivalent state.

I Definition 3 (Non-uniform replicated system). We say that a replicated system is non-
uniform if the replication protocol guarantees that in a quiescent state, the state of any
two replicas is observable equivalent, i.e., in the quiescent state (s1, . . . , sn), we have si

o≡
sj ,∀si, sj ∈ {s1, . . . , sn}.

G. Cabrita and N. Preguiça 0:5

3.1 Example
We now give an example that shows the benefit of non-uniform replication. Consider an
object top-1 with three operations: (i) add(name, value), an update operation that adds
the pair to the top; (ii) rmv(name), an update operation that removes all previously added
pairs for name; (iii) get(), a query that returns the pair with the largest value (when more
than one pair has the same largest value, the one with the smallest lexicographic name is
returned).

Consider that add(a, 100) is executed in a replica and replicated to all replicas. Later
add(b, 110) is executed and replicated. At this moment, all replicas know both pairs.

If later add(c, 105) executes in some replica, the replication protocol does not need to
propagate the update to the other replicas in a non-uniform replicated system. In this case,
all replicas are observable equivalent, as a query executed at any replica returns the same
correct value. This can have an important impact not only in the size of object replicas, as
each replica will store only part of the data, but also in the bandwidth used by the replication
protocol, as not all updates need to be propagated to all replicas.

We note that the states that result from the previous execution are not equivalent because
after executing rmv(b), the get operation will return (c, 105) in the replica that has received
the add(c, 105) we operation and (b, 100) in the other replicas.

Our definition only forces the states to be observable equivalent after the replication
protocol becomes quiescent. Different protocols can be devised giving different guarantees.
For example, for providing linearizability, the protocol should guarantee that all replicas
return (c, 105) after the remove. This can be achieved, for example, by replicating the now
relevant (c, 105) update in the process of executing the remove.

In the remainder of this paper, we study how to apply the concept of non-uniform
replication in the context of eventually consistent systems. The study of its application to
systems that provide strong consistency is left for future work.

4 Non-uniform eventual consistency

We now apply the concept of non-uniform replication to replicated systems providing eventual
consistency.

4.1 System model
We consider an asynchronous distributed system composed by n nodes, where nodes may
exhibit fail-stop faults but not byzantine faults. We assume a communication system with a
single communication primitive, mcast(m), that can be used by a process to send a message
to every other process in the system with reliable broadcast semantics. A message sent by a
correct process is eventually received by all correct processes. A message sent by a faulty
process is either received by all correct processes or none. Several communication systems
provide such properties – e.g. systems that propagate messages reliably using anti-entropy
protocols [8, 9].

An object is defined as a tuple (S, s0,Q,Up,Ue), where S is the set of valid states of
the object, s0 ∈ S is the initial state of the object, Q is the set of read-only operations
(or queries), Up is the set of prepare-update operations and Ue is the set of effect-update
operations.

A query executes only at the replica where the operation is invoked, its source, and it has
no side-effects, i.e., the state of an object remains unchanged after executing the operation.

OPODIS 2017

0:6 Non-uniform Replication

When an application wants to update the state of the object, it issues a prepare-update
operation, up ∈ Up. A up operation executes only at the source, has no side-effects and
generates an effect-update operation, ue ∈ Ue. At source, ue executes immediately after up.

As only effect-update operations may change the state of the object, for reasoning about
the evolution of replicas we can restrict our analysis to these operations. To be precise, the
execution of a prepare-update operation generates an instance of an effect-update operation.
For simplicity, we refer the instances of operations simply as operations. With Oi the set of
operations generated at node i, the set of operations generated in an execution, or simply
the set of operations in an execution, is O = O1 ∪ . . . ∪On.

4.2 Non-uniform eventual consistency
For any given execution, with O the operations of the execution, we say a replicated system
provides eventual consistency iff in a quiescent state: (i) every replica executed all operations
of O; and (ii) the state of any pair of replicas is equivalent.

A sufficient condition for achieving the first property is to propagate all generated
operations using reliable broadcast (and execute any received operation). A sufficient
condition for achieving the second property is to have only commutative operations. Thus, if
all operations commute with each other, the execution of any serialization of O in the initial
state of the object leads to an equivalent state.

From now on, unless stated otherwise, we assume that all operations commute. In this
case, as all serializations of O are equivalent, we denote the execution of a serialization of O
in state s simply as s •O.

For any given execution, with O the operations of the execution, we say a replicated
system provides non-uniform eventual consistency iff in a quiescent state the state of any
replica is observable equivalent to the state obtained by executing some serialization of O.
As a consequence, the state of any pair of replicas is also observable equivalent.

For a given set of operations in an execution O, we say that Ocore ⊆ O is a set of core
operations of O iff s0 •O o≡ s0 •Ocore. We define the set of operations that are irrelevant to
the final state of the replicas as follows: Omasked ⊆ O is a set of masked operations of O iff
s0 •O o≡ s0 • (O \Omasked).
I Theorem 4 (Sufficient conditions for NuEC). A replication system provides non-uniform
eventual consistency (NuEC) if, for a given set of operations O, the following conditions
hold: (i) every replica executes a set of core operations of O; and (ii) all operations commute.
Proof. From the definition of core operations of O, and by the fact that all operations
commute, it follows immediately that if a replica executes a set of core operations, then
the final state of the replica is observable equivalent to the state obtained by executing a
serialization of O. Additionally, any replica reaches an observable equivalent state. J

4.3 Protocol for non-uniform eventual consistency
We now build on the sufficient conditions for providing non-uniform eventual consistency
to devise a correct replication protocol that tries to minimize the operations propagated to
other replicas. The key idea is to avoid propagating operations that are part of a masked set.
The challenge is to achieve this by using only local information, which includes only a subset
of the executed operations.

Algorithm 1 presents the pseudo-code of an algorithm for achieving non-uniform eventual
consistency – the algorithm does not address the durability of operations, which will be
discussed later.

G. Cabrita and N. Preguiça 0:7

Algorithm 1 Replication algorithm for non-uniform eventual consistency
1: S : state: initial s0 . Object state
2: logrecv : set of operations: initial {}
3: loglocal : set of operations: initial {} . Local operations not propagated
4:
5: execOp(op): void . New operation generated locally
6: loglocal = loglocal ∪ {op}
7: S = S • op
8:
9: opsToPropagate(): set of operations . Computes the local operations that need to be propagated

10: ops = maskedF orever(loglocal, S, logrecv)
11: loglocal = loglocal \ ops
12: opsImpact = hasObservableImpact(loglocal, S, logrecv)
13: opsP otImpact = mayHaveObservableImpact(loglocal, S, logrecv)
14: return opsImpact ∪ opsP otImpact
15:
16: sync(): void . Propagates local operations to remote replicas
17: ops = opsT oP ropagate()
18: compactedOps = compact(ops) . Compacts the set of operations
19: mcast(compactedOps)
20: logcoreLocal = {}
21: loglocal = loglocal \ ops
22: logrecv = logrecv ∪ ops
23:
24: on receive(ops): void . Process remote operations
25: logrecv = logrecv ∪ ops
26: S = S • ops

The algorithm maintains the state of the object and two sets of operations: loglocal, the
set of effect-update operations generated in the local replica and not yet propagated to other
replicas; logrecv, the set of effect-update operations propagated to all replicas (including
operations generated locally and remotely).

When an effect-update operation is generated, the execOp function is called. This function
adds the new operation to the log of local operations and updates the local object state.

The function sync is called to propagate local operations to remote replicas. It starts
by computing which new operations need to be propagated, compacts the resulting set of
operations for efficiency purposes, multicasts the compacted set of operations, and finally
updates the local sets of operations. When a replica receives a set of operations (line 24), the
set of operations propagated to all nodes and the local object state are updated accordingly.

Function opsToPropagate addresses the key challenge of deciding which operations need
to be propagated to other replicas. To this end, we divide the operations in four groups.

First, the forever masked operations, which are operations that will remain in the set
of masked operations independently of the operations that might be executed in the future.
In the top example, an operation that adds a pair masks forever all known operations that
added a pair for the same element with a lower value. These operations are removed from
the set of local operations.

Second, the core operations (opsImpact, line 12), as computed locally. These operations
need to be propagated, as they will (typically) impact the observable state at every replica.

Third, the operations that might impact the observable state when considered in com-
bination with other non-core operations that might have been executed in other replicas
(opsPotImpact, line 13). As there is no way to know which non-core operations have been
executed in other replicas, it is necessary to propagate these operations also. For example,
consider a modified top object where the value associated with each element is the sum of
the values of the pairs added to the object. In this case, an add operation that would not
move an element to the top in a replica would be in this category because it could influence

OPODIS 2017

0:8 Non-uniform Replication

the top when combined with other concurrent adds for the same element.
Fourth, the remaining operations that might impact the observable state in the future,

depending on the evolution of the observable state. These operations remain in loglocal.
In the original top example, an operation that adds a pair that will not be in the top, as
computed locally, is in this category as it might become the top element after removing the
elements with larger values.

For proving that the algorithm can be used to provide non-uniform eventual consistency,
we need to prove the following property.
I Theorem 5. Algorithm 1 guarantees that in a quiescent state, considering all operations
O in an execution, all replicas have received all operations in a core set Ocore.
Proof. To prove this property, we need to prove that there exists no operation that has not
been propagated by some replica and that is required for any Ocore set. Operations in the first
category have been identified as masked operations independently of any other operations
that might have been or will be executed. Thus, by definition of masked operations, a Ocore

set will not (need to) include these operations. The fourth category includes operations that
do not influence the observable state when considering all executed operations – if they might
have impact, they would be in the third category. Thus, these operations do not need to be
in a Ocore set. All other operations are propagated to all replicas. Thus, in a quiescent state,
every replica has received all operations that impact the observable state. J

4.4 Fault-tolerance
Non-uniform replication aims at reducing the cost of communication and the size of replicas,
by avoiding propagating operations that do not influence the observable state of the object.
This raises the question of the durability of operations that are not immediately propagated
to all replicas.

One way to solve this problem is to have the source replica propagating every local
operation to f more replicas to tolerate f faults. This ensures that an operation survives
even in the case of f faults. We note that it would be necessary to adapt the proposed
algorithm, so that in the case a replica receives an operation for durability reasons, it would
propagate the operation to other replicas if the source replica fails. This can be achieved
by considering it as any local operation (and introducing a mechanism to filter duplicate
reception of operations).

4.5 Causal consistency
Causal consistency is a popular consistency model for replicated systems [15, 2, 16], in which
a replica only executes an operation after executing all operations that causally precede it [12].
In the non-uniform replication model, it is impossible to strictly adhere to this definition
because some operations are not propagated (immediately), which would prevent all later
operations from executing.

An alternative would be to restrict the dependencies to the execution of core operations.
The problem with this is that the status of an operation may change by the execution of
another operation. When a non-core operation becomes core, a number of dependencies that
should have been enforced might have been missed in some replicas.

We argue that the main interest of causal consistency, when compared with eventual
consistency, lies in the semantics provided by the object. Thus, in the designs that we present
in the next section, we aim to guarantee that in a quiescent state, the state of the replicated
objects provide equivalent semantics to that of a system that enforces causal consistency.

G. Cabrita and N. Preguiça 0:9

5 Non-uniform operation-based CRDTs

CRDTs [23] are data-types that can be replicated, modified concurrently without coordination
and guarantee the eventual consistency of replicas given that all updates propagate to all
replicas. We now present the design of two useful operation-based CRDTs [23] that adopt
the non-uniform replication model. Unlike most operation-based CRDT designs, we do not
assume that the system propagates operations in a causal order. These designs were inspired
by the state-based computational CRDTs proposed by Navalho et al. [19], which also allow
replicas to diverge in their quiescent state.

5.1 Top-K with removals NuCRDT
In this section we present the design of a non-uniform top-K CRDT, as the one introduced
in section 3.1. The data type allows access to the top-K elements added and can be used,
for example, for maintaining the leaderboard in online games. The proposed design could
be adapted to define any CRDT that filters elements based on a deterministic function by
replacing the topK function used in the algorithm by another filter function.

For defining the semantics of our data type, we start by defining the happens-before
relation among operations. To this end, we start by considering the happens-before relation
established among the events in the execution of the replicated system [12]. The events
that are considered relevant are: the generation of an operation at the source replica, and
the dispatch and reception of a message with a new operation or information that no new
message exists. We say that operation opi happens before operation opj iff the generation of
opi happened before the generation of opj in the partial order of events.

The semantics of the operations defined in the top-K CRDT is the following. The
add(el,val) operation adds a new pair to the object. The rmv(el) operation removes any pair
of el that was added by an operation that happened-before the rmv (note that this includes
non-core add operations that have not been propagated to the source replica of the remove).
This leads to an add-wins policy [23], where a remove has no impact on concurrent adds.
The get() operation returns the top-K pairs in the object, as defined by the function topK
used in the algorithm.

Algorithm 2 presents a design that implements this semantics. The prepare-update add
operation generates an effect-update add that has an additional parameter consisting in
a timestamp (replicaid, val), with val a monotonically increasing integer. The prepare-
update rmv operation generates an effect-update rmv that includes an additional parameter
consisting in a vector clock that summarizes add operations that happened before the remove
operation. To this end, the object maintains a vector clock that is updated when a new add
is generated or executed locally. Additionally, this vector clock should be updated whenever
a replica receives a message from a remote replica (to summarize also the adds known in the
sender that have not been propagated to this replica).

Besides this vector clock, vc, each object replica maintains: (i) a set, elems, with the
elements added by all add operations known locally (and that have not been removed yet);
and (ii) a map, removes, that maps each element id to a vector clock with a summary of
the add operations that happened before all removes of id (for simplifying the presentation
of the algorithm, we assume that a key absent from the map has associated a default vector
clock consisting of zeros for every replica).

The execution of an add consists in adding the element to the set of elems if the add has
not happened before a previously received remove for the same element – this can happen as
operations are not necessarily propagated in causal order. The execution of a rmv consists

OPODIS 2017

0:10 Non-uniform Replication

Algorithm 2 Top-K NuCRDT with removals
1: elems : set of 〈id, score, ts〉 : initial {}
2: removes : map id 7→ vectorClock: initial []
3: vc : vectorClock: initial []
4:
5: get() : set
6: return {〈id, score〉 : 〈id, score, ts〉 ∈ topK(elems)}
7:
8: prepare add(id, score)
9: generate add(id, score, 〈getReplicaId(), + + vc[getReplicaId()]〉)

10:
11: effect add(id, score, ts)
12: if removes[id][ts.siteId] < ts.val then
13: elems = elems ∪ {〈id, score, ts〉}
14: vc[ts.siteId] = max(vc[ts.siteId], ts.val)
15:
16: prepare rmv(id)
17: generate rmv(id,vc)
18:
19: effect rmv(id, vcrmv)
20: removes[id] = pointwiseMax(removes[id], vcrmv)
21: elems = elems \ {〈id0, score, ts〉 ∈ elem : id = id0 ∧ ts.val ≤ vcrmv[ts.siteId]}
22:
23: maskedForever(loglocal, S, logrecv): set of operations
24: adds = {add(id1, score1, ts1) ∈ loglocal :
25: (∃add(id2, score2, ts2) ∈ loglocal : id1 = id2 ∧ score1 < score2 ∧ ts1.val < ts2.val)∨
26: (∃rmv(id3, vcrmv) ∈ (logrecv ∪ loglocal) : id1 = id3 ∧ ts1.val ≤ vcrmv[ts1.siteId]}
27: rmvs = {rmv(id1, vc1) ∈ loglocal : ∃rmv(id2, vc2) ∈ (loglocal ∪ logrecv) : id1 = id2 ∧ vc1 < vc2}
28: return adds ∪ rmvs
29:
30: mayHaveObservableImpact(loglocal, S, logrecv): set of operations
31: return {} . This case never happens for this data type
32:
33: hasObservableImpact(loglocal, S, logrecv): set of operations
34: adds = {add(id1, score1, ts1) ∈ loglocal : 〈id1, score1, ts1〉 ∈ topK(S.elems)}
35: rmvs = {rmv(id1, vc1) ∈ loglocal : (∃add(id2, score2, ts2) ∈ (loglocal ∪ logrecv) :
36: 〈id2, score2, ts2〉 ∈ topK(S.elems ∪ {〈id2, score2, ts2〉}) ∧ id1 = id2 ∧ ts2.val ≤ vc1[ts2.siteId])}
37: return adds ∪ rmvs
38:
39: compact(ops): set of operations
40: return ops . This data type does not require compaction

in updating removes and deleting from elems the information for adds of the element that
happened before the remove. To verify if an add has happened before a remove, we check if
the timestamp associated with the add is reflected in the remove vector clock of the element
(lines 12 and 21). This ensures the intended semantics for the CRDT, assuming that the
functions used by the protocol are correct.

We now analyze the code of these functions.
Function maskedForever computes: the local adds that become masked by other

local adds (those for the same element with a lower value) and removes (those for the same
element that happened before the remove); the local removes that become masked by other
removes (those for the same element that have a smaller vector clock). In the latter case, it
is immediate that a remove with a smaller vector clock becomes irrelevant after executing
the one with a larger vector clock. In the former case, a local add for an element is masked
by a more recent local add for the same element but with a larger value as it is not possible
to remove only the effects of the later add without removing the effect of the older one. A
local add also becomes permanently masked by a local or remote remove that happened after
the add.

Function mayHaveObservableImpact returns the empty set, as for having impact on

G. Cabrita and N. Preguiça 0:11

any observable state, an operation also has to have impact on the local observable state by
itself.

Function hasObservableImpact computes the local operations that are relevant for
computing the top-K. An add is relevant if the added value is in the top; a remove is relevant
if it removes an add that would be otherwise in the top.

5.2 Top Sum NuCRDT

We now present the design of a non-uniform CRDT, Top Sum, that maintains the top-K
elements added to the object, where the value of each element is the sum of the values added
for the element. This data type can be used for maintaining a leaderboard in an online game
where every time a player completes some challenge it is awarded some number of points,
with the current score of the player being the sum of all points awarded. It could also be used
for maintaining a top of the best selling products in an (online) store (or the top customers,
etc).

The semantics of the operations defined in the Top Sum object is the following. The
add(id, n) update operation increments the value associated with id by n. The get() read-only
operation returns the top-K mappings, id→ value, as defined by the topK function (similar
to the Top-K NuCRDT).

This design is challenging, as it is hard to know which operations may have impact in the
observable state. For example, consider a scenario with two replicas, where the value of the
last element in the top is 100. If the known score of an element is 90, an add of 5 received in
one replica may have impact in the observable state if the other replica has also received an
add of 5 or more. One approach would be to propagate these operations, but this would lead
to propagating all operations.

To try to minimize the number of operations propagated we use the following heuristic
inspired by the demarcation protocol and escrow transactions [4, 20]. For each id that does
not belong to the top, we compute the difference between the smallest value in the top and
the value of the id computed by operations known in every replica – this is how much must
be added to the id to make it to the top: let d be this value. If the sum of local adds for the
id does not exceed d

num.replicas in any replica, the value of id when considering adds executed
in all replicas is smaller than the smallest element in the top. Thus, it is not necessary to
propagate add operations in this case, as they will not affect the top.

Algorithm 3 presents a design that implements this approach. The state of the object is a
single variable, state, that maps identifiers to their current values. The only prepare-update
operation, add, generates an effect-update add with the same parameters. The execution of
an effect-update add(id, n) simply increments the value of id by n.

Function maskedForever returns the empty set, as operations in this design can never
be forever masked.

Function mayHaveObservableImpact computes the set of add operations that can
potentially have an impact on the observable state, using the approach previously explained.

Function hasObservableImpact computes the set of add operations that have their
corresponding id present in the top-K. This guarantees that the values of the elements in the
top are kept up-to-date, reflecting all executed operations.

Function compact takes a set of add operations and compacts the add operations that
affect the same identifier into a single operation. This reduces the size of the messages sent
through the network and is similar to the optimization obtained in delta-based CRDTs [1].

OPODIS 2017

0:12 Non-uniform Replication

Algorithm 3 Top Sum NuCRDT
1: state : map id 7→ sum: initial []
2:
3: get() : map
4: return topK(state)
5:
6: prepare add(id, n)
7: generate add(id, n)
8:
9: effect add(id, n)

10: state[id] = state[id] + n
11:
12: maskedForever(loglocal, S, logrecv): set of operations
13: return {} . This case never happens for this data type
14:
15: mayHaveObservableImpact(loglocal, S, logrecv): set of operations
16: top = topK(S.state)
17: adds = {add(id, _) ∈ loglocal : s = sumval({add(i, n) ∈ loglocal : i = id})
18: ∧ s ≥ ((min(sum(top))− (S.state[id]− s)) / getNumReplicas())}
19: return adds
20:
21: hasObservableImpact(loglocal, S, logrecv): set of operations
22: top = topK(S.state)
23: adds = {add(id, _) ∈ loglocal : id ∈ ids(top)}
24: return adds
25:
26: compact(ops): set of operations
27: adds = {add(id, n) : id ∈ {i : add(i, _) ∈ ops}∧ n = sum({k : add(id1, k) ∈ ops : id1 = id})}
28: return adds

5.3 Discussion
The goal of non-uniform replication is to allow replicas to store less data and use less
bandwidth for replica synchronization. Although it is clear that non-uniform replication
cannot be useful for all data, we believe that the number of use cases is large enough for
making non-uniform replication interesting in practice. We now discuss two classes of data
types that can benefit from the adoption of non-uniform replication.

The first class is that of data types for which the result of queries include only a subset
of the data in the object. In this case two different situations may occur: (i) it is possible to
compute locally, without additional information, if some operation is relevant (and needs
to be propagated to all replicas); (ii) it is necessary to have additional information to be
able to decide if some operation is relevant. The Top-K CRDT presented in section 5.1 is an
example of the former. Another example includes a data type that returns a subset of the
elements added based on a (modifiable) user-defined filter – e.g. in a set of books, the filter
could select the books of a given genre, language, etc. The Top-Sum CRDT presented in
section 5.2 is an example of the latter. Another example includes a data type that returns
the 50th percentile (or others) for the elements added – in this case, it is only necessary to
replicate the elements in a range close to the 50th percentile and replicate statistics of the
elements smaller and larger than the range of replicated elements.

In all these examples, the effects of an operation that in a given moment do not influence
the result of the available queries may become relevant after other operations are executed –
in the Top-K with removes due to a remove of an element in the top; in the filtered set due
to a change in the filter; in the Top-Sum due to a new add that makes an element relevant;
and in the percentile due to the insertion of elements that make the 50th percentile change.
We note that if the relevance of an operation cannot change over time, the non-uniform
CRDT would be similar to an optimized CRDT that discard operations that are not relevant
before propagating them to other replicas.

G. Cabrita and N. Preguiça 0:13

A second class is that of data types with queries that return the result of an aggregation
over the data added to the object. An example of this second class is the Histogram CRDT
presented in the appendix. This data type only needs to keep a count for each element. A
possible use of this data type would be for maintaining the summary of classifications given
by users in an online shop. Similar approaches could be implemented for data types that
return the result of other aggregation functions that can be incrementally computed [19].

A data type that supports, besides adding some information, an operation for removing
that information would be more complex to implement. For example, in an Histogram CRDT
that supports removing a previously added element, it would be necessary that concurrently
removing the same element would not result in an incorrect aggregation result. Implementing
such CRDT would require detecting and fixing these cases.

6 Evaluation

In this section we evaluate our data types that follow the non-uniform replication model. To
this end, we compare our designs against state-of-the-art CRDT alternatives: delta-based
CRDTs [1] that maintain full object replicas efficiently by propagating updates as deltas
of the state; and computational CRDTs [19] that maintain non-uniform replicas using a
state-based approach.

Our evaluation is performed by simulation, using a discrete event simulator. To show
the benefit in terms of bandwidth and storage, we measure the total size of messages sent
between replicas for synchronization (total payload) and the average size of replicas.

We simulate a system with 5 replicas for each object. Both our designs and the compu-
tational CRDTs support up to 2 replica faults by propagating all operations to, at least, 2
other replicas besides the source replica. We note that this limits the improvement that our
approach could achieve, as it is only possible to avoid sending an operation to two of the five
replicas. By either increasing the number of replicas or reducing the fault tolerance level, we
could expect that our approach would perform comparatively better than the delta-based
CRDTs.

6.1 Top-K with removals
We begin by comparing our Top-K design (NuCRDT) with a delta-based CRDT set [1]
(Delta CRDT) and the top-K state-based computational CRDT design [19] (CCRDT).

The top-K was configured with K equal to 100. In each run, 500000 update operations
were generated for 10000 Ids and with scores up to 250000. The values used in each operation
were randomly selected using a uniform distribution. A replica synchronizes after executing
100 events.

Given the expected usage of top-K for supporting a leaderboard, we expect the remove
to be an infrequent operation (to be used only when a user is removed from the game).
Figures 1 and 2 show the results for workloads with 5% and 0.05% of removes respectively
(the other operations are adds).

In both workloads our design achieves a significantly lower bandwidth cost when compared
to the alternatives. The reason for this is that our design only propagates operations that
will be part of the top-K. In the delta-based CRDT, each replica propagates all new updates
and not only those that are part of the top. In the computational CRDT design, every
time the top is modified, the new top is propagated. Additionally, the proposed design of
computational CRDTs always propagates removes.

OPODIS 2017

0:14 Non-uniform Replication

 0

 50

 100

 150

 200

 250

 300

 350

 400

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e

Pa
yl

oa
d
 (

M
B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

A
ve

ra
g
e

R
ep

lic
a

S
iz

e
(M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 1 Top-K with removals: payload size and replica size, workload of 95/5

 0

 50

 100

 150

 200

 250

 300

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e

Pa
yl

oa
d
 (

M
B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

A
ve

ra
g
e

R
ep

lic
a

S
iz

e
(M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 2 Top-K with removals: payload size and replica size, workload of 99.95/0.05

The results for the replica size show that our design is also more space efficient than
previous designs. This is a consequence of the fact that each replica, besides maintaining
information about local operations, only keeps information from remote operations received
for guaranteeing fault-tolerance and those that have influenced the top-K at some moment
in the execution. The computational CRDT design additionally keeps information about
all removes. The delta-based CRDT keeps information about all elements that have not
been removed or overwritten by a larger value. We note that as the percentage of removes
approaches zero, the replica sizes of our design and that of computational CRDT starts to
converge to the same value. The reason for this is that the information maintained in both
designs is similar and our more efficient handling of removes starts becoming irrelevant. The
opposite is also true: as the number of removes increases, our design becomes even more
space efficient when compared to the computational CRDT.

6.2 Top Sum
To evaluate our Top Sum design (NuCRDT), we compare it against a delta-based CRDT map
(Delta CRDT) and a state-based computational CRDT implementing the same semantics
(CCRDT).

The top is configured to display a maximum of 100 entries. In each run, 500000 update
operations were generated for 10000 Ids and with challenges awarding scores up to 1000. The
values used in each operation were randomly selected using a uniform distribution. A replica
synchronizes after executing 100 events.

Figure 3 shows the results of our evaluation. Our design achieves a significantly lower
bandwidth cost when compared with the computational CRDT, because in the computational
CRDT design, every time the top is modified, the new top is propagated. When compared
with the delta-based CRDTs, the bandwidth of NuCRDT is approximately 55% of the
bandwidth used by delta-based CRDTs. As delta-based CRDTs also include a mechanism for
compacting propagated updates, the improvement comes from the mechanisms for avoiding

G. Cabrita and N. Preguiça 0:15

 1

 10

 100

 1000

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e

Pa
yl

oa
d
 (

M
B
),

 l
og

1
0

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

100k 200k 300k 400k 500k

A
ve

ra
g
e

R
ep

lic
a

S
iz

e(
M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 3 Top Sum: payload size and replica size

propagating operations that will not affect the top elements, resulting in less messages being
sent.

The results for the replica size show that our design also manages to be more space
efficient than previous designs. This is a consequence of the fact that each replica, besides
maintaining information about local operations, only keeps information of remote operations
received for guaranteeing fault-tolerance and those that have influenced the top elements at
some moment in the execution.

7 Conclusions

In this paper we proposed the non-uniform replication model, an alternative model for
replication that combines the advantages of both full replication, by allowing any replica to
reply to a query, and partial replication, by requiring that each replica keeps only part of
the data. We have shown how to apply this model to eventual consistency, and proposed
a generic operation-based synchronization protocol for providing non-uniform replication.
We further presented the designs of two useful replicated data types, the Top-K and Top
Sum, that adopt this model (in appendix, we present two additional designs: Top-K without
removals and Histogram). Our evaluation shows that the application of this new replication
model helps to reduce the message dissemination costs and the size of replicas.

In the future we plan to study which other data types can be designed that adopt this
model and to study how to integrate these data types in cloud-based databases. We also
want to study how the model can be applied to strongly consistent systems.

Acknowledgments

This work has been partially funded by CMU-Portugal research project GoLocal Ref. CMUP-
ERI/TIC/0046/2014, EU LightKone (grant agreement n.732505) and by FCT/MCT project
NOVA-LINCS Ref. UID/CEC/04516/2013. Part of the computing resources used in this
research were provided by a Microsoft Azure Research Award.

References
1 Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state replicated data types.

J. Parallel Distrib. Comput., 111:162–173, 2018. doi:10.1016/j.jpdc.2017.08.003.
2 Sérgio Almeida, João Leitão, and Luís Rodrigues. ChainReaction: A Causal+ Consis-

tent Datastore Based on Chain Replication. In Proc. 8th ACM European Conference on
Computer Systems, EuroSys ’13, 2013. doi:10.1145/2465351.2465361.

3 Gustavo Alonso. Partial database replication and group communication primitives. In Proc.
European Research Seminar on Advances in Distributed Systems, 1997.

OPODIS 2017

0:16 Non-uniform Replication

4 Daniel Barbará-Millá and Hector Garcia-Molina. The Demarcation Protocol: A Tech-
nique for Maintaining Constraints in Distributed Database Systems. The VLDB Journal,
3(3):325–353, July 1994. doi:10.1007/BF01232643.

5 James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wil-
son Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi
Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner:
Google’s Globally-distributed Database. In Proc. 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, 2012.

6 Tyler Crain and Marc Shapiro. Designing a Causally Consistent Protocol for Geo-
distributed Partial Replication. In Proc. 1st Workshop on Principles and Practice of Con-
sistency for Distributed Data, PaPoC ’15, 2015. doi:10.1145/2745947.2745953.

7 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: Amazon’s Highly Available Key-value Store. In Proc. 21st ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07, 2007. doi:10.1145/1294261.
1294281.

8 Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard
Sturgis, Dan Swinehart, and Doug Terry. Epidemic Algorithms for Replicated Database
Maintenance. In Proc. 6th Annual ACM Symposium on Principles of Distributed Comput-
ing, PODC ’87, 1987. doi:10.1145/41840.41841.

9 Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent Massouliea-
cute;. Epidemic Information Dissemination in Distributed Systems. Computer, 37(5), May
2004. doi:10.1109/MC.2004.1297243.

10 Konstantinos Kloudas, Margarida Mamede, Nuno Preguiça, and Rodrigo Rodrigues. Pixida:
Optimizing Data Parallel Jobs in Wide-area Data Analytics. Proc. VLDB Endow., 9(2):72–
83, October 2015. doi:10.14778/2850578.2850582.

11 Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized Structured Storage
System. SIGOPS Oper. Syst. Rev., 44(2), April 2010. doi:10.1145/1773912.1773922.

12 Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Com-
mun. ACM, 21(7), July 1978. doi:10.1145/359545.359563.

13 Leslie Lamport. The Part-time Parliament. ACM Trans. Comput. Syst., 16(2), May 1998.
doi:10.1145/279227.279229.

14 Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo
Rodrigues. Making geo-replicated systems fast as possible, consistent when necessary. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’12, pages 265–278, 2012.

15 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t
Settle for Eventual: Scalable Causal Consistency for Wide-area Storage with COPS. In
Proc. 23rd ACM Symposium on Operating Systems Principles, SOSP ’11, 2011. doi:10.
1145/2043556.2043593.

16 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Stronger
Semantics for Low-latency Geo-replicated Storage. In Proc. 10th USENIX Conference on
Networked Systems Design and Implementation, nsdi’13, 2013.

17 Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr El Ab-
badi. Low-latency Multi-datacenter Databases Using Replicated Commit. Proc. VLDB
Endow., 6(9), July 2013. doi:10.14778/2536360.2536366.

18 Henrique Moniz, João Leitão, Ricardo J. Dias, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. Blotter: Low Latency Transactions for Geo-Replicated Storage. In

G. Cabrita and N. Preguiça 0:17

Proceedings of the 26th International Conference on World Wide Web, WWW ’17, pages
263–272, 2017. doi:10.1145/3038912.3052603.

19 David Navalho, Sérgio Duarte, and Nuno Preguiça. A Study of CRDTs That Do Compu-
tations. In Proc. 1st Workshop on Principles and Practice of Consistency for Distributed
Data, PaPoC ’15, 2015. doi:10.1145/2745947.2745948.

20 Patrick E. O’Neil. The Escrow Transactional Method. ACM Trans. Database Syst.,
11(4):405–430, December 1986. URL: http://doi.acm.org/10.1145/7239.7265, doi:
10.1145/7239.7265.

21 Yasushi Saito and Marc Shapiro. Optimistic Replication. ACM Comput. Surv., 37(1),
March 2005. doi:10.1145/1057977.1057980.

22 Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-Store: Genuine Partial Replication
in Wide Area Networks. In Proc. 29th IEEE Symposium on Reliable Distributed Systems,
SRDS ’10, 2010. doi:10.1109/SRDS.2010.32.

23 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free Repli-
cated Data Types. In Proc. 13th International Conference on Stabilization, Safety, and
Security of Distributed Systems, SSS’11, 2011.

24 Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for
geo-replicated systems. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 385–400, 2011. doi:10.1145/2043556.2043592.

25 Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Mar-
cos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based Service Level Agreements
for Cloud Storage. In Proc. 24th ACM Symposium on Operating Systems Principles, SOSP
’13, 2013. doi:10.1145/2517349.2522731.

26 Albert van der Linde, João Leitão, and Nuno Preguiça. ∆-crdts: Making δ-crdts delta-
based. In Proceedings of the 2Nd Workshop on the Principles and Practice of Consistency
for Distributed Data, PaPoC ’16, pages 12:1–12:4, 2016. doi:10.1145/2911151.2911163.

27 Werner Vogels. Eventually Consistent. Commun. ACM, 52(1), January 2009. doi:10.
1145/1435417.1435432.

OPODIS 2017

0:18 Non-uniform Replication

A APPENDIX

In this appendix we present two additional NuCRDT designs. These designs exemplify the
use of different techniques for the creation of NuCRDTs.

A.1 Top-K without removals
A simpler example of a data type that fits our proposed replication model is a plain top-K,
without support for the remove operation. This data type allows access to the top-K elements
added to the object and can be used, for example, for maintaining a leaderboard in an online
game. The top-K defines only one update operation, add(id,score), which adds element id
with score score. The get() operation simply returns the K elements with largest scores.
Since the data type does not support removals, and elements added to the top-K which do
not fit will simply be discarded this means the only case where operations have an impact in
the observable state are if they are core operations – i.e. they are part of the top-K. This
greatly simplifies the non-uniform replication model for the data type.
Algorithm 4 Top-K NuCRDT
1: elems : {〈id, score〉} : initial {}
2:
3: get() : set
4: return elems
5:
6: prepare add(id, score)
7: generate add(id, score)
8:
9: effect add(id, score)

10: elems = topK(elems ∪ {〈id, score〉})
11:
12: maskedForever(loglocal, S, logrecv) : set of operations
13: adds = {add(id1, score1) ∈ loglocal : (∃add(id2, score2) ∈ logrecv : id1 = id2 ∧ score2 > score1)
14: return adds
15:
16: mayHaveObservableImpact(loglocal, S, logrecv) : set of operations
17: return {} . Not required for this data type
18:
19: hasObservableImpact(loglocal, S, logrecv) : set of operations
20: return {add(id, score) ∈ loglocal : 〈id, score〉 ∈ S.elems}
21:
22: compact(ops): set of operations
23: return ops . This data type does not use compaction

Algorithm 4 presents the design of the top-K NuCRDT. The prepare-update add(id,score)
generates an effect-update add(id,score).

Each object replica maintains only a set of K tuples, elems, with each tuple being
composed of an id and a score. The execution of add(id,score) inserts the element into the
set, elems, and computes the top-K of elems using the function topK. The order used for the
topK computation is as follows: 〈id1, score1〉 > 〈id2, score2〉 iff score1 > score2 ∨ (score1 =
score2 ∧ id1 > id2). We note that the topK function returns only one tuple for each element
id.

Function maskedForever computes the adds that become masked by other add opera-
tions for the same id that are larger according to the defined ordering. Due to the way the
top is computed, the lower values for some given id will never be part of the top. Function
mayHaveObservableImpact always returns the empty set since operations in this data
type are always core or forever masked. Function hasObservableImpact returns the set of
unpropagated add operations which add elements that are part of the top – essentially, the

G. Cabrita and N. Preguiça 0:19

add operations that are core at the time of propagation. Function compact simply returns
the given ops since the design does not require compaction.

A.2 Histogram
We now introduce the Histogram NuCRDT that maintains a histogram of values added to
the object. To this end, the data type maintains a mapping of bins to integers and can be
used to maintain a voting system on a website. The semantics of the operations defined in
the histogram is the following: add(n) increments the bin n by 1; merge(histogramdelta) adds
the information of a histogram into the local histogram; get() returns the current histogram.
Algorithm 5 Histogram NuCRDT
1: histogram : map bin 7→ n : initial []
2:
3: get() : map
4: return histogram
5:
6: prepare add(bin)
7: generate merge([bin 7→ 1])
8:
9: prepare merge(histogram)

10: generate merge(histogram)
11:
12: effect merge(histogramdelta)
13: histogram = pointwiseSum(histogram, histogramdelta)
14:
15: maskedForever(loglocal, S, logrecv) : set of operations
16: return {} . Not required for this data type
17:
18: mayHaveObservableImpact(loglocal, S, logrecv) : set of operations
19: return {} . Not required for this data type
20:
21: hasObservableImpact(loglocal, S, logrecv) : set of operations
22: return loglocal

23:
24: compact(ops): set of operations
25: deltas = {hist : merge(histdelta) ∈ ops}
26: return {merge(pointwiseSum(deltas))}

This data type is implemented in the design presented in Algorithm 5. The prepare-
update add(n) generates an effect-update merge([n 7→ 1]). The prepare-update operation
merge(histogram) generates an effect-update merge(histogram).

Each object replica maintains only a map, histogram, which maps bins to integers. The
execution of a merge(histogramdelta) consists of doing a pointwise sum of the local histogram
with histogramdelta.

Functions maskedForever and mayHaveObservableImpact always return the empty
set since operations in this data type are always core. Function hasObservableImpact
simply returns loglocal, as all operations are core in this data type. Function compact takes
a set of instances of merge operations and joins the histograms together returning a set
containing only one merge operation.

OPODIS 2017

Fine-Grained Consistency Upgrades for Online
Services

Filipe Freitas‡†�, João Leitão†, Nuno Preguiça†, and Rodrigo Rodrigues�∗
‡ISEL, Instituto Superior de Engenharia de Lisboa, Portugal; †NOVA-LINCS & FCT,

Universidade NOVA de Lisboa, Portugal; �INESC-ID; ∗IST, Universidade de Lisboa, Portugal

Abstract—Online services such as Facebook or Twitter have
public APIs to enable an easy integration of these services with
third party applications. However, the developers who design
these applications have no information about the consistency
provided by these services, which exacerbates the complexity
of reasoning about the semantics of the applications they are
developing. In this paper, we show that is possible to deploy a
transparent middleware between the application and the service,
which enables a fine-grained control over the session guarantees
that comprise the consistency semantics provided by these APIs,
without having to gain access to the implementation of the
underlying services. We evaluated our middleware using the
Facebook public API and the Redis datastore, and our results
show that we are able to provide fine-grained control of the
consistency semantics incurring in a small local storage and
modest latency overhead.

I. INTRODUCTION

Many computer systems and applications make use of
stateful services that run in the cloud, with various types of
interfaces mediating the access to these cloud services. For
instance, an application may decide to store its persistent state
in a Cassandra cluster running on Azure instances, or directly
leverage a cloud storage service such as S3. At a higher level
of abstraction, services such as Twitter or Facebook have not
only attracted millions of users to their main websites, but
have also enabled a myriad of popular applications that are
layered on top of those services by leveraging the public APIs
they provide.

An important challenge that arises from this layering is that
the consistency semantics of these cloud services are almost
always not clearly specified, with studies showing that in
practice these services expose a number of consistency anoma-
lies to applications [7]. Furthermore, even in the cases where
precise specifications exist, it is difficult for programmers to
reason about their impact, and this may lead to violations of
application invariants that were meant to be preserved [2].

In this paper, we argue that it is possible to build a middle-
ware layer mediating the access to cloud services in order to
obtain fine-grained control over the consistency semantics that
these services provide. The idea is that we can design a library
that intercepts every call to the service or storage system
running in the cloud, inserting relevant meta-data, calling the
original API, and transforming the results that are obtained in
a transparent way for the application. Through a combination
of analyzing this meta-data and caching results that have been
previously observed, this shim layer can then enforce fine-
grained consistency guarantees.

In prior work, Bailis et al. [3] have proposed a similar
approach, but with two main limitations compared to this
work. First, their shim layer only provides a coarse-grained
upgrade from eventual to causal consistency. In contrast, we
allow programmers to turn on and off individual session
guarantees, where different guarantees have been shown to be
useful to different application scenarios [9]. Second, their work
assumes the underlying 〈key,value〉 store is a NoSQL system
with a read/write interface. Such an assumption simplifies the
development of the shim layer, since (1) it gives the layer full
access to the data stored in the system, and (2) it provides an
interface with simple semantics.

In this work, we propose a shim layer that allows for a
fine-grained control over the session guarantees that applica-
tions should perceive when accessing online services. These
services typically enforce rate limits for operations issued by
client applications. For guaranteeing that this limit is the same
when using our shim layer, a single service operation should be
executed for each application operation. Furthermore, our layer
is not limited to using online storage services with a read/write
interface, since it is designed to operate with services that
offer a messaging interface such as online social networks.
The combination of these three requirements raises interesting
challenges from the perspective of the algorithms that our shim
layer implements, e.g., to handle the fact that online social
networks only return a subset of recent messages, which raises
the question of whether a message does not appear because
of a lack of a session guarantee or because of being truncated
out of the list of recent messages.

We implemented our shim layer and integrated it with the
Facebook API and the Redis storage system. Our evaluation
shows that our layer allows for fine-grained consistency up-
grades at a modest latency overhead.

The remainder of this paper is organized as follows. Sec-
tion II discusses our target systems and the assumptions made
regarding the centralized system over which third-party appli-
cations are developed. Section III discusses the architecture
and high level view of our system, while Section IV details
the algorithms employed in our solution to enforce each of
the session guarantees. Section V discusses our prototype
implementation and presents experimental results obtained
over two different services. Finally, Section VI discusses
relevant related work and Section VII concludes the paper
with some final remarks.

2017 IEEE 36th Symposium on Reliable Distributed Systems

978-1-5386-1679-6/17 $31.00 © 2017 IEEE

DOI 10.1109/SRDS.2017.9

1

2017 IEEE 36th Symposium on Reliable Distributed Systems

978-1-5386-1679-6/17 $31.00 © 2017 IEEE

DOI 10.1109/SRDS.2017.9

1

2017 IEEE 36th Symposium on Reliable Distributed Systems

978-1-5386-1679-6/17 $31.00 © 2017 IEEE

DOI 10.1109/SRDS.2017.9

1

2017 IEEE 36th Symposium on Reliable Distributed Systems

978-1-5386-1679-6/17 $31.00 © 2017 IEEE

DOI 10.1109/SRDS.2017.9

1

2017 IEEE 36th Symposium on Reliable Distributed Systems

978-1-5386-1679-6/17 $31.00 © 2017 IEEE

DOI 10.1109/SRDS.2017.9

1

II. TARGET SYSTEMS

Our goal is to provide particular consistency guarantees to
third-party applications using popular online web services that
expose public APIs. In particular, the application developer
may choose to have individual session guarantees (read your
write, monotonic reads, monotonic writes, and writes follows
reads) as well as combinations of these properties (in partic-
ular, all four session guarantees corresponds to causality [5]).
To achieve this, we provide a library that can be easily attached
to the third-party client application, allowing us to enrich the
semantics exposed through the system public API. There are
multiple popular systems that provide such public APIs, with
various differences in terms of the interface they expose. As
such, we needed to focus on a group of APIs with a similar
service interface that we can easily adapt to, and we chose to
focus on a particular class of services, namely social networks,
such as Facebook, Twitter, or Instagram. Our choice is based
on the relevance and popularity of these services and also on
the large number of third-party applications that are developed
for them. In particular, we target services that expose a data
model based on key-value stores, where data objects can be
accessed through a key, and that associate a list of objects
to each key. We observe that this data model is prevalent in
online social network services, particularly since they share
concepts such as user feeds and comment lists. In particular,
we target services where the API provides two fundamental
operations to manipulate the list of objects associated with a
given key: an insert operation to append a new object to the
first position of the list, and a get operation that exposes the
first N elements of the list (i.e., the most recent N elements).

Since we access these services through their public APIs,
we need to view the service implementation as a black box,
meaning that no assumptions are made regarding their inter-
nal operation. Furthermore, we design our protocols without
making any assumption regarding the consistency guarantees
provided through the public service API. The importance of
not assuming any guarantees from existing services is justified
by our own previous measurement study [7], which showed a
high prevalence of violations of multiple session guarantees
in public APIs provided by services of this class.

Our algorithms require storing meta-data alongside the data,
which can be difficult to do when accessing services as black
boxes, namely when the service has no support for including
user managed meta-data (this is the case of Facebook, which
we explore in the context of our prototype experimental
evaluation). In this case, we need to encode this meta-data
as part of the data itself. As a consequence, when the service
is accessed by native clients (i.e., web applications or third
party applications that do not resort to our Middleware) the
user might see this meta-data. However, we believe that this
is not a crucial issue, since many third party applications only
access lists that are used exclusively by that application.

In order to arbitrate an ordering among operations issued by
the local client and other remote clients, our Middleware has
the need to have an approximate estimate of the current time.

������

��		��
���

������

���	������������

���������������� �������������	�

�����������
�����	

��������������������	������������� �������

��������������������	������������� �������

Fig. 1. Middleware

To achieve this, two options are available. If the service has
a specific call in its public API that exposes the time in the
server, such call can directly be used by our system. Otherwise,
if the service exposes a REST API (which is typical in many
services) a simple REST call can be performed to the service,
and the server time can be extracted from a standard HTTP
response header (called Date). Note that, even though it is
desirable that this estimate is synchronized across clients, we
do not require either clock or clock rate synchronization for
correctness. In particular, the only negative effect of clocks
being out of synch is a reordering of concurrent events
from different sessions that is incoherent with their real time
occurrence; this can imply, in the case of a service that
outputs a sliding window of recent events, that more recent
messages may be considered eligible for being truncated (i.e.,
considered older than the lower end of the window). However,
we guarantee that such ordering never violates the correctness
conditions we are enforcing.

Finally, we observe that, in practice, the public API exposed
by these services often imposes rate limits for operations
issued by client applications. These rate limits are exposed
under the form of a maximum number of operations that
can be executed within a given time window. In particular,
we have experimentally observed that violating these rate
limits can lead the service to either block further access by
the application, or introduce noticeable delays in processing
requests issued by the application. The existence of operation
rate limits imposes a requirement on our protocols: for each
application operation, a single service operation can be issued.
This is important to guarantee that an application using our
middleware faces the same rate limits as an application using
directly the service.

III. SYSTEM OVERVIEW

In this section we discuss the general architecture of our
solution, which is materialized in a library implementing
a middleware layer. We then provide an overview of the
operation of our protocols, explaining how they enforce the
consistency guarantees of session properties in a transparent
way for the client applications.

22222

A. Architecture

Our system consists of a thin layer that runs on the client
side and intercepts every call made by the third-party client
application on the service, mediating access to the service. In
particular, our layer is responsible for contacting the service on
behalf of the client application, process the responses returned
by the service and generate responses to the client applications
according with the session guarantees being enforced. Figure 1
provides a simple representation of this architecture.

Our system can be configured by the third-party application
developer to enforce any combination of the individual session
guarantees (as defined by Terry et. al [9]), namely: i) read your
writes, ii) monotonic reads, iii) monotonic writes, and iv)
writes follows reads. In order to enforce these guarantees, our
system is required to maintain information regarding previous
operations executed by the client application, namely previous
writes that were issued or previous values that were observed
by the client. In addition, our layer can also insert meta-data
that is stored alongside the data in the original system, but
stripped by the library before the final response is conveyed
to the client.

B. Overview

As mentioned, our system intercepts each request performed
by the client application, executes the request in the service,
and then processes the answer generated by the service to
provide a (potentially different) answer to the client applica-
tion. This answer is computed based on a combination of the
internal state that records the previous operations that were
run by that particular client, and the actual response that was
returned by the service.

Tracking application activity. In order to keep track of
user activity, our system maintains in memory a set of data
structures for each part of the service state that is accessed by
the application. These data structures are updated according
both to the activity of the applications (i.e., the operations that
were invoked) and the state that is returned by the service.
These data structures are: i) the insertSet, which stores the
elements inserted by the client and ii) the localView, which
stores the elements returned to the client.

Enforcing session guarantees. Enforcing session guaran-
tees entails achieving two complementary aspects. First, and
depending on the session guarantees being enforced, some
additional meta-data must be added when inserting operations.
As mentioned, this meta-data can be either added to a special-
ized meta-data field (if the API exposed by the service allows
this) or directly encoded within the body of the element being
added to the list. Such meta-data has to be extracted by our
library when retrieving the elements of a list, thus ensuring
transparency towards client applications. Second, our system
might be required to either remove or add elements to the list
that is returned by the service when the application issues an
operation to obtain the current service state, in order to ensure
that the intended session guarantees are not violated.

In the next section, we discuss the concrete algorithms
executed by our system upon receiving an insert or get

Algorithm 1: Initialization of local state
1: upon init(Lst) do
2: lstState ← init()
3: lstState.insertSet ← {}
4: lstState.localView ← {}
5: lstState.lastTimestamp ← 0
6: lstState.insertCounter ← 0
7: listStates[Lst] ← lstState

operation for a particular list, in order to ensure that the values
observed by the client application adhere to the semantics of
each of the session guarantees that are intended to be provided.

IV. ALGORITHMS

We now discuss in more detail the algorithms that are
employed by our Middleware layer to enforce session guar-
antees, and the rationale for their design. To this end, we
briefly remind what each of the four session guarantees entails
(we extend the definitions previously introduced in [7]), and
then explain why our algorithms ensure that the anomalies
associated with each of the session guarantees are prevented
by it.

We explain our algorithms assuming that the service offers
an interface with the following two functions, which are in
practice easily mapped to functions that are supported by the
various services that we analyzed: the insertion of an element
in a given list Lst, denoted by the execution of function
insert(Lst,ElementID,V alue), where Lst identifies the
list being accessed, ElementID denotes the identifier of the
element being added (which can be an identifier generated by
the centralized service or a unique identifier generated by our
Middleware), and V alue stands for the value of the element
being added to the list; and the access to the contents of a list,
denoted by the execution of function get(Lst), where Lst
identifies the list being read by the client.

When the client accesses a list Lst for the first time, a
special initialization procedure is triggered internally by our
Middleware (Alg. 1), which initializes the local state regarding
the accesses to Lst. The initialization is straightforward: it cre-
ates the object lstState that maintains all relevant information
to manage the accesses to Lst (line 2). This state is composed
by the sets insertSet and localView that were discussed
previously, and that are initially empty (lines 3 − 4). Fur-
thermore, two other variables are initialized, lastTimestamp,
which is used to maintain information regarding elements
that were removed from the previously discussed sets, and
insertCounter, which tracks the number of inserts performed
by the local client in the context of the current session. Both
of these variables have an initial value of zero (lines 5 − 6).
Finally, the lstState variable is stored in a local map, associated
to the list Lst (line 7). Next, we explain how this local state
is leveraged by our algorithms to enforce the various session
guarantees.

A. Read Your Writes

The Read Your Writes (RYW) session guarantee requires
that, in a session, any read observes all writes previously

33333

Algorithm 2: Read Your Writes
1: function insert(Lst, ElementId, V alue) do
2: lstState ← listStates[Lst]
3: Element e ← init()
4: e.v ← V alue
5: e.id ← ElementId
6: e.timestamp ← obtainServiceTimeStamp()
7: SERVICE.insert(Lst, ElementId, e)
8: lstState.insertSet ← e ∪ lstState.insertSet

9: function get(Lst) do
10: lstState ← listStates[Lst]
11: sl ← SERVICE.get(Lst)
12: sl ← orderByTimestamp(sl)
13: sl ← addMissingElementsToSL(sl, lstState.insertSet, lstState.lastTimestamp)
14: sl ← purgeOldElementFromSL(sl, lstState.insertSet, lstState.lastTimestamp)
15: lstState.lastTimestamp ← getLastTimestamp(sl)
16: return removeMetadata(subList(sl, 0, N))

executed by the same client. More precisely, for every set
of insert operations W made by a client c over a list L in
a given session, and set S of elements from list L returned by
a subsequent get operation of c over L, we say that RYW is
violated if and only if ∃x ∈W : x /∈ S.

This definition, however, does not consider the case where
only the N most recent elements of a list are returned by
a get operation. In this case, some writes of a given client
may not be present in the result if more than N other insert
operations have been performed (by client c or any other
client). Considering that the list must hold the most recent
writes, a RYW anomaly happens when a get operation returns
an older write performed by the client but misses a more recent
one. More formally, given two writes x, y over list L executed
in the same client session, where x was executed before y,
an anomaly of RYW happens in a get that returns S when
∃x, y ∈W : x ≺ y ∧ y /∈ S ∧ x ∈ S.

Alg. 2 presents our algorithm for providing RYW. To avoid
the anomaly described above, the idea is to store, locally at the
client, all elements that are inserted by the local client in the
list and add them to the result of get operations. In the insert
operation, the inserted element is stored locally by the client
(line 8). Additionally, our algorithm stores some meta-data
in the object before performing the insert operation over the
centralized service (lines 5− 6). This information represents,
respectively, the identifier of the element and a timestamp for
the insert operation (from the perspective of the service, and
retrieved as described in Section II). The element identifier
is used to uniquely identify the writes. The timestamp and
element identifier allow for totally ordering all entries in the
insertSet, with the order being approximately that of the real-
time order of execution. Note that the operation in line 12 also
checks if the timestamps retrieved from the service in the same
session are monotonically increasing, and, if not, enforces
that property by overwriting the returned timestamp with an
increment of the most recent one; this is important to avoid
reordering events from the same session in case the timestamp
provided by the server does not increase monotonically for
some reason.

For executing a get operation (line 9) our algorithm starts

Algorithm 3: Monotonic reads
1: function insert(Lst, ElementID, V alue) do
2: Element e ← init()
3: e.id ← ElementID
4: e.v ← V alue
5: SERVICE.insert(Lst, ElementID, e)

6: function get(Lst) do
7: lstState ← listStates[Lst]
8: sl ← SERVICE.get(Lst)
9: lstState.localView ← appendNewElementsToTop(sl, lstState.localView)
10: return removeMetadata(subList(lstState.localView, 0, N))

by executing the get operation over the service (line 11). Then,
the returned list (sl) is ordered (line 12) and all elements of
the local insertSet that are missing in the list are added to
the list, keeping it ordered (line 13). Before returning the
most recent N elements (with no meta-data) (line 16), our
algorithm removes old session elements from the sl list and
updates the lastTimestamp variable with the timestamp of the
oldest element of the client session returned to the client (lines
14− 16).

A limitation of this algorithm is that it causes the insertset
to grow indefinitely. To avoid this, we use the timestamp of
each element to remove from the insertset any element older
than lastTimestamp. We also need to include the session id
in the metadata of each element to avoid old elements of the
session to reaper. We omit this from Alg. 2 for readability.

B. Monotonic Reads

This session guarantee requires that all writes reflected in
a read are also reflected in all subsequent reads performed
by the same client. To define this in our scenario where a
truncated list of N recent elements is returned, we say that
Monotonic Reads (MR) is violated when a client c issues
two read operations that return sequences S1 and S2 (in that
order) and the following property holds: ∃x, y ∈ S1 : x ≺
y in S1 ∧ y /∈ S2 ∧ x ∈ S2, where x ≺ y means that element
x appears in S1 before y.

To avoid this anomaly, our algorithm (presented in Alg. 3)
resorts to the localView variable to maintain information
regarding the elements (and their respective order) observed by
the client in previous get operations. Therefore, when the client
issues a get operation, our Middleware issues the get command
over the centralized service (line 8) and then updates the
contents of its localView with any elements that are returned
by the service and that were not yet within the localView (line
9). These new elements are appended to the start of the list, as
they are assumed to be more recent than those of the current
localView.

The algorithm terminates by returning to the client the N
most recent elements in the localView. These elements are
exposed to the client without any of the meta-data added
by our algorithms (line 10). Note that in this case the insert
operation only issues the corresponding insert command with
additional meta-data on the centralized service (lines 1− 5).

Similar to the previously discussed algorithm, this approach
has a limitation regarding the growth of local state, in this

44444

Algorithm 4: Monotonic Writes
1: function insert(Lst, ElementID, V alue) do
2: lstState ← listStates[Lst]
3: Element e ← init()
4: e.id ← ElementID
5: e.v ← V alue
6: e.clientSession ← getClientSessionID()
7: e.sessionCounter ← lstState.insertCounter++
8: SERVICE.insert(Lst, ElementID, e)

9: function get(Lst) do
10: lstState ← listStates[Lst]
11: sl ← SERVICE.get(Lst)
12: sl ← sortElementsBySessionCounters(sl)
13: sl ← removeElementsWithMissingDependencies(sl)
14: return removeMetadata(sl)

case the localView can grow indefinitely. To avoid this, we
associate with each element inserted in the list a timestamp.
This timestamp allows us to remove from the localView any
element with a timestamp smaller than the timestamp of the
oldest element that was in the last return to the client. We omit
this from Alg. 3 for readability.

C. Monotonic Writes

This session guarantee requires that writes issued by a given
client are observed in the order in which they were issued
by all clients. More precisely, if W is a sequence of write
operations issued by client c up to a given instant, and S is a
sequence of write operations returned in a read operation by
any client, a Monotonic Writes (MW) anomaly happens when
the following property holds, where W (x) ≺W (y) denotes x
precedes y in sequence W : ∃x, y ∈W : W (x) ≺W (y)∧ y ∈
S ∧ (x /∈ S ∨ S(y) ≺ S(x)).

However, this definition needs to be adapted for the case
where only N elements of a list are returned by a get operation.
In this case, some session sequences may be incomplete,
because older elements of the sequence may be left out of
the truncated list of N returned elements. Thus, we consider
that older elements are eligible to be dropped from the
output, provided that we ensure that there are no gaps in the
session subsequences and that the write order is respected,
before returning to the client. Formally, we can redefine
MW anomalies as follows, given a sequence of writes W
in the same session, and a sequence S returned by a read:
(∃x, y, z ∈ W : W (x) ≺ W (y) ≺ W (z) ∧ x ∈ S ∧ y /∈
S ∧ z ∈ S) ∨ (∃x, y ∈W : W (x) ≺W (y) ∧ S(y) ≺ S(x)).

Alg. 4 presents the algorithm employed by our Middleware
to enforce the MW session guarantee. We avoid the anomaly
described above by adding meta-data to each insert operation
(lines 1 − 8) in the form of a unique client session id
(clientSession – line 6) and a counter (local to each client
and session) that grows monotonically (sessionCounter – line
7). This information allows us to establish a total order of
inserts for each client session.

This meta-data is then leveraged during the execution of a
get operation (lines 9−14) in the following way. After reading
the current list from the service (line 11), we simply order the
elements in the read list (sl) to ensure that all elements respect

Algorithm 5: Write Follows Read
1: function insert(Lst, ElementID, V alue) do
2: lstState ← listStates[Lst]
3: Element e ← init()
4: e.id ← ElementID
5: e.v ← V alue
6: e.cutTimestamp ← obtainCutTimestamp(lstState.localView)
7: e.dependencies ← projectElementIdentifiers(lstState.localView)
8: e.timestamp ← obtainIncreasingServiceTimeStamp(lstState.localView)
9: SERVICE.insert(Lst, ElementID, e)

10: function get(Lst) do
11: lstState ← listStates[Lst]
12: sl ← SERVICE.get(Lst)
13: sl ← removeElementsWithMissingDependencies(sl)
14: cutTimestamp ← highestCutTimestamp(sl)
15: sl ← removeElementsBelowCutTimestamp(sl, cutTimestamp)
16: lstState.localView ← appendNewElementsByTimestamp(ls, lstState.localView)
17: lstState.localView ← purgeOldElements(lstState.localView)
18: return removeMetadata(sl)

the partial orders for each client session (line 12). Finally, an
additional step is required to ensure that no element is missing
in any of these partial orders. To ensure this, whenever a gap is
found within the elements of a given client session, we remove
all elements whose sessionCounter is above the one of any of
the missing elements.

The get operation returns the contents that are left in the
list sl without the meta-data added by our algorithms (line
14). Note that in this case we might return to the client a
list of elements with a size below N . We could mitigate this
behavior by resorting to the contents of the localView as we
did in the algorithm to enforce MR. However, we decided to
provide the minimal behavior to enforce each of the session
guarantees in isolation.

D. Write Follows Read

This session guarantee requires that the effects of a write
observed in a read by a given client always precede the
writes that the same client subsequently performs. (Note that
although this anomaly has been used to exemplify causality
violations [1], [8], any of the previous anomalies represent a
different form of a causality violation [9].) To formalize this
definition, and considering that the service only returns at most
N elements in a list, if S1 is a sequence returned by a read
invoked by client c, w a write performed by c after observing
S1, and S2 is a sequence returned by a read issued by any
client in the system; a violation of the Write Follows Read
(WFR) anomaly happens when: w ∈ S2 ∧ ∃x, y ∈ S1 : x ≺
y in S1 ∧ y /∈ S2 ∧ x ∈ S2.

Our algorithm to enforce this session guarantee is depicted
in Alg. 5. The key idea to avoid this anomaly is to associate
with each insert the direct list of dependencies of that insert,
i.e, all elements previously observed by the client performing
the insert (line 7). Evidently, this solution is not practical,
since this list could easily grow to include all previous inserts
performed during the lifetime of the system. To overcome
this limitation, we associate with each insert a timestamp
based on the clock of the service, but with the restriction of

55555

being strictly greater than the timestamp of any of its direct
dependencies (line 8). Furthermore, we also associate with
each insert a cut timestamp, that defines the timestamp of its
last explicit dependency, i.e, the dependencies registered in the
dependency list (line 6). The cut timestamp implicitly defines
every element with a lower timestamp to be a dependency of
that insert operation. By combining these different techniques,
we ensure that the explicit dependency list associated with an
insert has at most a value around N elements (which is the
size of the localView maintained by our Middleware).

Since only N elements of a list are returned by a get
operation, the older dependencies may be left out of the
sequence that is returned. When this happens, it is safe
to consider that these dependencies were dropped from the
window that is returned, provided that we ensure that, for each
element that is returned, all dependencies that are more recent
than the oldest element are also returned.

In the get operation we leverage this meta-data to do the
following: we start by reading the contents of the list from
the service (line 12) and then over this list we remove any
insert whose dependencies are missing. Thus, we only remove
inserts whose missing dependencies have a timestamp above
the insert cut timestamp. We then compute a cut timestamp for
the obtained list sl (line 13) that is the highest cut timestamp
among all elements in sl. We use this timestamp to remove
from sl any element whose creation timestamp falls below the
computed cut timestamp. Finally, before returning to the client
the elements that remain in sl without the additional meta-data
(line 18) we update and garbage collect old entries from the
localView (lines 16− 17).

Similarly to the previous algorithm, the service might return
a number of elements that is lower than N . In this case,
to ensure that we always return N elements, we need to
obtain the missing dependencies using a get operation that
returns a single element (if supported by the service). In our
implementation, we avoided this solution because it is prone
to triggering a violation of the API rate limits. Again, an
alternative way to address this is by, after reading the list from
the service, merging its contents with those in the localStore
and enforcing an order that is compatible with the timestamp
of each element. However, for simplicity in exposition, we
omit the details of this alternative.

E. Combining multiple session guarantees

Considering the algorithms to enforce each of the session
guarantees discussed above, we can now summarize how to
combine them. In a nutshell, it suffices for our Middleware
to, on insert operations, add the meta-data used by each of
the individual algorithms according to the guarantees config-
ured by the application developer. Correspondingly, upon the
execution of a get operation, our Middleware must perform
the transformations over the list obtained from the service (sl)
prescribed by each of the individual algorithms. Furthermore,
all meta-data added to each element must also be removed
before exposing data to the client application.

������

��		��
���

������

������!���"���������	"������#��������!���#

���	������������

���������������� �������������	�

�����������
�����	

�������	�����

������!���"���������	"������#��������!���#

�������	�����

���$������!���"���������	"������#��������$���!���#

���$������!���"���������	"������#��������$���!���#

Fig. 2. Middleware with adapters

V. EVALUATION

In this section we present the experimental evaluation of our
Middleware, which compares the client-perceived performance
obtained when using our Middleware to provide each of the
session guarantees in isolation and their combination (i.e,
enforcing all four session guarantees). In our experiments we
used a prototype of our Middleware whose implementation
we briefly discuss below. Our evaluation was made using two
different geo-replicated online services. First, to illustrate the
benefit of our Middleware when designing third-party appli-
cations that interact with online social networks we have used
Facebook’s public API. Then, to illustrate the operation of our
Middleware when interacting with a service that imposes fewer
restrictions on the number and timing of client operations, we
experimented with a geo-replicated deployment of the Redis
datastore managed by ourselves.

Our evaluation focuses on asserting the overhead that results
from the use of our middleware, in terms of client perceived
latency (for insert and get operations), the communication
overhead due to the inclusion of additional meta-data, and
the storage overhead, namely due to the need for our Mid-
dleware to locally maintain some information about previous
operations performed by the client.

A. Implementation

Our prototype of the Middleware layer proposed in the paper
was implemented in the Java language. To interact with the two
services that we explore in this work, we resorted to the restFB
library for Facebook1, and the Jedis library for interacting with
Redis2.

Since our prototype was designed to interact with any
Internet service with a public API, it requires two adapter
layers to be written and provided to its runtime upon execution

1http://restfb.com
2https://github.com/xetorthio/jedis

66666

(see Figure 2). These layers capture the API calls performed
by the client application and translate them to a standard
API exposed by our Middleware, and translate the calls to
the centralized service performed by our Middleware into
API calls to the library used to interact with the service,
respectively. We have implemented these adapters for the
two case studies employed in this evaluation. The adapters
themselves are quite straightforward to write, and we believe
most developers will be able to easily write new adapters to
use our Middleware in combination with different libraries for
accessing other online services.

B. Facebook Results

We have conducted our experiments with Facebook by using
YCSB [6] to emulate clients using Facebook to post messages
to a group feed and reading the contents of that group feed.
To emulate such clients spread across the World, we run
three independent YCSB instances in three different locations
using Amazon EC2 instances in Oregon, Ireland, and Tokyo.
Each YCSB instance uses 10 threads, emulating a total of
30 independent clients, for a total of 90 clients across the
World. Each emulated client has an independent instance of
our Middleware. To accommodate the rate limits of Facebook’s
public API, we impose a maximum of 15 requests per second
per YCSB instance.

Each experiment reported in this section was executed 7
times, and different consistency guarantees were rotated along
experiments, such that each different consistency guarantee
had experiments running on different time periods of the
day. This was done to remove experimental noise due to
contention on the Facebook servers, e.g., due to other user
activity. The workload executed by clients was a mix of 50%
inserts and 50% gets. The Middleware was configured to have
N = 25 meaning that each get retrieves at most 25 elements
from the feed. Experiments reported in this section report the
aggregated observations of 53, 119 insert and get operations.

1) Latency: We start by observing the latency of operations
in Facebook when accessing the service directly through the
library (labeled in the plots as NONE) and when using our
Middleware to enforce each of the session guarantees in
isolation and all of the session guarantees (labeled in the plots
as ALL).

Figure 3 reports the latency observed for get operations, for
all clients and per location of the client. Figure 3(a) shows
that our Middleware introduces a small increase in the latency
of get operations with a maximum increase of approximately
one hundred milliseconds. Not surprisingly the overhead is at
its maximum when all session guarantees are being enforced
by our Middleware which is explained by a combination of
the additional meta-data carried in each element, and the
processing cost of the Middleware to perform the enforcement
of each individual session guarantee.

When observing the distribution of latency for requests
according to the region where the client is located (Fig-
ure 3(b)), we note the same relative distribution in the results,
with overall lower latency values for the clients in Oregon.

This is explained by the latency of those clients towards the
Facebook servers, which is notoriously smaller according to
the latency when using the client library directly. Another
noteworthy aspect of Figure 3(b) is that the observed latency
has a visible variation, both across and even within different
client locations. This suggests that the latency overhead in
these cases may suffer from a noticeable variability due to
external factors which are related with the architecture and
deployment of such a large-scale real World application.

Figure 4 reports average latency results for the insert
operation for all clients and per client location. The results
reported in Figure 4(a) show that globally the latency penalty
incurred by the use of our Middleware is again modest, with
a maximum increase of at most 50 milliseconds. The individ-
ual session guarantee with the largest increase in latency is
monotonic reads. Considering the latency values observed in
different locations reported in Figure 4(b), we note the same
pattern previously observed, where the latency experienced
by clients in Oregon is lower compared with the remaining
locations. This is expected, since this can be explained by
the latency experienced by the client to contact the Facebook
service in that concrete location when compared with the
remaining locations used in our experimental work.

2) Communication Overhead: We now study the communi-
cation overhead imposed by our Middleware by observing the
average size of messages exchanged between clients and the
service. Figure 5 reports these results for each of the session
guarantees and for their combination, compared with the use
of the library without our Middleware, for both get and insert
operations. The results show that the overhead introduced by
our Middleware is low for the get operations. This happens
because most of the payload in these messages are the multiple
elements of the list that are returned. Since our algorithms
use small meta-data objects, the communication cost remains
dominated by the contents of the elements that are read, as
can be observed in Figure 5(a).

The same is not true for insert operations, as reported
in Figure 5(b). In this case, since each message contains
only a single element to be added, the increase in message
size is quite noticeable when the Middleware is enforcing
Writes Follows Reads and the combination of all session
guarantees. This happens due to the cost of sending the
explicit dependencies of each inserted element, which can
account to 25 unique element identifiers and their timestamps.
The remaining session guarantees, in contrast, have a modest
overhead of only a few tens of bytes.

3) Local Storage Size: Finally, Figure 6 reports the storage
cost in terms of elements stored locally by our Middleware
for enforcing each of the session guarantees and their combi-
nation. For completeness, we also provide the results for the
NONE configuration, which, as expected, is zero. This is used
as a sanity check for our results. Monotonic writes do not
require any form of local storage, and therefore have no local
storage overhead. In contrast, the remaining session guarantees
resort to elements stored in the insertSet and localView data
structures. As expected, when providing all of the session

77777

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

None RYW MR MW WFR ALL

T
im

e(
m

s)

Consistency Guarantees

(a) Global

 0

 100

 200

 300

 400

 500

 600

Oregon Ireland Tokyo

T
im

e(
m

s)

NONE
RYW

MR
MW

WFR
ALL

(b) Per location

Fig. 3. Latency of Get Operation in Facebook

 0

 100

 200

 300

 400

 500

 600

None RYW MR MW WFR All

T
im

e(
m

s)

Consistency Guarantees

(a) Global

 0

 100

 200

 300

 400

 500

 600

Oregon Ireland Tokyo

T
im

e(
m

s)

NONE
RYW

MR
MW

WFR
ALL

(b) Per location

Fig. 4. Latency of Insert Operation in Facebook

 10

 100

 1000

 10000

 100000

None RYW MR MW WFR All

B
yt

es

Consistency Guarantees

(a) Get Operation

 10

 100

 1000

 10000

None RYW MR MW WFR All

B
yt

es

Consistency Guarantees

(b) Insert Operation

Fig. 5. Communication overhead in Facebook

 0

 5

 10

 15

 20

 25

 30

 35

None RYW MR MW WFR All

S
iz

e
(e

nt
rie

s/
se

ss
io

n)

Consistency Guarantees

Fig. 6. Local storage overhead for Facebook

guarantees the local storage has more entries, this happens
because the number of entries is the sum of the elements in
the insertSet and in the localView.

C. Redis Results

We also conducted experiments using the Redis data stor-
age system. To this end, we have deployed Redis with its
replication enabled across machines scattered in three Amazon
EC2 regions: Oregon, Tokyo, and Ireland. Redis uses a master-
slave replication model, and we have deployed the master in
Ireland and two slaves in each region, for a total of 7 replicas.
YCSB was executed in the same three regions of Amazon EC2
used in the previously reported experiments, with each YCSB
instance running 10 threads that execute operation in a closed
loop. Each thread has its own instance of the Middleware.
All operations access the same list object stored in Redis,

with the read operation being executed in one of the slave
replicas, selected randomly. For each algorithm, we run our
experiments 6 times for 60 seconds with an interval of four
minutes between runs. Similar to the experiments conducted
with Facebook, YCSB was configured to execute a workload
composed of 50% inserts and 50% of reads. Again, we set
N to be equal to 25. The experiments reported in this section
aggregate the results from executing a total of 21, 285, 291
insert and get operations.

1) Latency: Figure 7(a) presents the average latency of get
operations. The results shows that our middleware introduces
a very small overhead, on the order of microseconds, for
Read Your Writes, Monotonic Reads, and Monotonic Writes.
In Write Follows Read and when all session guarantees are
enforced, there is an increase of approximately one to two
milliseconds because the algorithms have to check the depen-
dencies and process the meta-data. The results of Figure 7(b),
which details the values observed in each region, show the
same pattern across all regions, namely that the latency for
reading data using a client in Ireland is higher than in other
locations (due to the proximity to the master replica). This
can be explained by the fact that writes in Ireland are much
faster that in other locations, which causes the number of read
operations that are executed to be higher in Ireland than in
other locations, thus leading to a higher load, which results in
a higher latency for executing operations.

In contrast to the experiments for the Facebook service,
the observed latencies are much more predictable in this
deployment. This confirms the expectation that a real-world
service leads to qualitatively different results from a controlled
experiment.

88888

 0

 500

 1000

 1500

 2000

 2500

 3000

None RYW MR MW WFR ALL

T
im

e(
us

)

Consistency Guarantees

(a) Global

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Oregon Ireland Tokyo

T
im

e(
us

)

NONE
RYW

MR
MW

WFR
ALL

(b) Per location

Fig. 7. Latency of Get Operation in Redis

 0

 20000

 40000

 60000

 80000

 100000

 120000

None RYW MR MW WFR All

T
im

e(
us

)

Consistency Guarantees

(a) Global

 0

 50000

 100000

 150000

 200000

 250000

Oregon Ireland Tokyo

T
im

e(
us

)

NONE
RYW

MR
MW

WFR
ALL

(b) Per Location

Fig. 8. Latency of Insert Operation in Redis

 10

 100

 1000

 10000

 100000

None RYW MR MW WFR All

B
yt

es

Consistency Guarantees

(a) Get Operation

 10

 100

 1000

 10000

None RYW MR MW WFR All

B
yt

es

Consistency Guarantees

(b) Insert Operation

Fig. 9. Communication overhead in Redis

 0

 500

 1000

 1500

 2000

 2500

None RYW MR MW WFR All

T
im

e(
us

)

Consistency Guarantees

Fig. 10. Latency of Insert Operation in Redis in Ireland

Figure 8(a) shows the latencies of the insert operation, in
this case the latency is almost the same across all cases, but
if we look to Figure 8(b) we see that in Ireland latency values
are much smaller, this is again justified by the location of the
master replica in Ireland and the fact that all clients are issuing
their write operations to the (same) master replica. Figure 10
reports the latencies in Ireland, again a similar pattern to the
one observed for Get operations.

2) Communication Overhead: In terms of communication
overhead imposed by our Middleware, the results in Figure
9(a) and Figure 9(b) show that in the Get and Insert opera-
tions the overhead is more noticeable when enforcing Write
Follows Read and in when employing the combination of
all algorithms. This happens due to the overhead associated
with managing and communicating the information stored in
dependency lists.

 0

 10

 20

 30

 40

 50

 60

None RYW MR MW WFR All

S
iz

e
(e

nt
rie

s/
se

ss
io

n)

Consistency Guarantees

Fig. 11. Local storage overhead for Redis

3) Local Storage Size: To conclude, Figure 11 shows that
in Monotonic Reads and Write Follows Read the number of
elements in the localView is around 30, which is higher than
N = 25. This happens because of the high write through-
put, which causes several elements to be assigned the same
timestamp. In this case, our truncation algorithm allows for the
limit to be exceeded in the case of ties. The combinations of all
algorithms is also affected by this situation, leading to a higher
value around 55. Note that we are showing the average of the
highest value registered for each independent client session at
any time during its execution.

VI. RELATED WORK

The closest related work can be found in the recent pro-
posals that also leverage a middleware layer that can mediate

99999

access to a storage system in order to upgrade the respective
consistency guarantees [3], [4].

In particular, Bailis et al. [3] proposed a system called
“bolt-on causal consistency” to offer causal consistency on
top of eventually consistent data stores. There are two main
distinctions between bolt-on causal consistency and our pro-
posal: first, we provide a fine-grained choice of which session
guarantees the programmer intends the system to provide, and
only pay a performance penalty that is associated with en-
forcing those guarantees. Second, they assume the underlying
system offers a general read/write storage interface, which
gives significant more flexibility in terms of the system design
than in our proposal, which is restricted to the APIs provided
by social networking services.

The other closely related system is the one proposed by
Bermbach et al. [4], which is also based on a generic storage
interface, namely that provided by S3, DynamoDB, or Sim-
pleDB, in contrast to our focus on high level service APIs.
While they also provide fine-grained session guarantees chosen
by the programmer, they limit these to Monotonic Reads and
Read Your Writes.

Our own prior work provides a measurement study of
the violations of session guarantees that are observed when
accessing real services [7]. However, the focus of that prior
work is on understanding the prevalence of occurrences of lack
of session guarantees, whereas this proposal is about fixing
those problems through a middleware layer implementing a
series of novel algorithms.

VII. CONCLUSIONS

In this paper we have shown that it is possible to enforce dif-
ferent consistency properties, in particular session guarantees
for third party applications that access online services through
their public APIs. We do so without explicit support from
the service architecture, and without assuming that the service
itself provides any of these guarantees. Our solution relies on
a thin Middleware layer that executes on the client side, and
intercepts all interactions of the client with the online service.
We have presented different algorithms to enforce each of the
well known session guarantees. Furthermore, our algorithms
follow a simple structure that allows to combine then easily.

We have developed a prototype in Java that we used to eval-
uate our approach using two centralized services: Facebook,
and a geo-replicated deployment of Redis. Our experiments
show that we can enforce session guarantees with a modest
overhead both in terms of user-perceived latency and commu-
nication with the centralized service.

Acknowledgements

This work was partially supported by the EU project
LightKone (grant agreement n. 732505) and by FCT
(UID/CEC/04516/2013). The research of R. Rodrigues is
funded by the European Research Council (ERC-2012-StG-
307732) and by FCT (UID/CEC/50021/2013). Part of the
computing resources used for this work were supported by
an AWS in Education Research Grant.

REFERENCES

[1] Sérgio Almeida, João Leitão, and Luı́s Rodrigues. ChainReaction: A
Causal+ Consistent Datastore Based on Chain Replication. In Proceedings
of the 8th ACM European Conference on Computer Systems, EuroSys ’13,
pages 85–98, New York, NY, USA, 2013. ACM.

[2] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M.
Hellerstein, and Ion Stoica. Feral Concurrency Control: An Empirical
Investigation of Modern Application Integrity. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15, pages 1327–1342, New York, NY, USA, 2015. ACM.

[3] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-
on Causal Consistency. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’13, pages
761–772, New York, NY, USA, 2013. ACM.

[4] David Bermbach, Jorn Kuhlenkamp, Bugra Derre, Markus Klems, and
Stefan Tai. A Middleware Guaranteeing Client-Centric Consistency on
Top of Eventually Consistent Datastores. In Proceedings of the 2013
IEEE International Conference on Cloud Engineering, IC2E ’13, pages
114–123, Washington, DC, USA, 2013. IEEE Computer Society.

[5] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. From session causality
to causal consistency. In Proceedings of the 12th Euromicro Conference
on Parallel, Distributed and Network-Based Processing, pages 152–158,
Feb 2004.

[6] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, pages 143–154, New York, NY, USA, 2010. ACM.

[7] F. Freitas, J. Leitao, N. Preguia, and R. Rodrigues. Characterizing
the Consistency of Online Services (Practical Experience Report). In
Proceedings of the 2016 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 638–645. IEEE, June
2016.

[8] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. Don’t Settle for Eventual: Scalable Causal Consistency for
Wide-area Storage with COPS. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11, pages 401–416,
New York, NY, USA, 2011. ACM.

[9] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin
Theimer, and Brent W. Welch. Session Guarantees for Weakly Consistent
Replicated Data. In Proceedings of the Third International Conference on
Parallel and Distributed Information Systems, PDIS ’94, pages 140–149,
Washington, DC, USA, 1994. IEEE Computer Society.

1010101010

FMKe: a Real-World Benchmark for Key-Value Data Stores
Gonçalo Tomás

NOVA LINCS & DI, FCT,
Universidade NOVA de Lisboa,

Portugal
ga.tomas@campus.fct.unl.pt

Peter Zeller
University of Kaiserslautern,

Germany
p_zeller@cs.uni-kl.de

Valter Balegas
NOVA LINCS & DI, FCT,

Universidade NOVA de Lisboa,
Portugal

v.sousa@campus.fct.unl.pt

Deepthi Akkoorath
University of Kaiserslautern,

Germany
akkoorath@cs.uni-kl.de

Annette Bieniusa
University of Kaiserslautern,

Germany
bieniusa@cs.uni-kl.de

João Leitão
NOVA LINCS & DI, FCT,

Universidade NOVA de Lisboa,
Portugal

jc.leitao@fct.unl.pt

Nuno Preguiça
NOVA LINCS & DI, FCT,

Universidade NOVA de Lisboa,
Portugal

nuno.preguica@fct.unl.pt

ABSTRACT
Standard benchmarks are essential tools to enable developers to
validate and evaluate their systems’ design in terms of both relevant
properties and performance. Benchmarks provide the means to eval-
uate a system with workloads that mimics real use cases. Although
a large number of benchmarks exist for database system, there is a
lack of standard benchmarks for an increasingly relevant class of
storage systems: geo-replicated key-value stores providing weak
consistency guarantees. This has led developers and researchers to
rely on ad-hoc tools, whose results are both hard to reproduce and
compare.

In this paper, we propose the �rst standardized benchmark spe-
cially tailored for weakly consistent key-value stores. The bench-
mark, named FMKe, is modeled after a real application: the Danish
National Joint Medicine Card. The benchmark is scalable, it can be
parameterized to emulate a large number of access patterns, and it
is also highly �exible, enabling its application on systems that o�er
di�erent consistency guarantees and mechanisms.

CCS CONCEPTS
• General and reference → Evaluation;

KEYWORDS
Benchmark, Key-Value Store

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’17, Belgrade, Serbia
© 2017 ACM. 978-1-4503-4933-8/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3064889.3064897

ACM Reference format:
Gonçalo Tomás, Peter Zeller, Valter Balegas, Deepthi Akkoorath, Annette
Bieniusa, João Leitão, and Nuno Preguiça. 2017. FMKe: a Real-World Bench-
mark for Key-Value Data Stores. In Proceedings of PaPoC’17, Belgrade, Serbia,
April 23, 2017, 4 pages.
DOI: http://dx.doi.org/10.1145/3064889.3064897

1 INTRODUCTION
Standard benchmarks provide a uniform way for evaluating and
comparing di�erent systems. The most used benchmarks for data-
bases (e.g. TPC-C [1], TPC-W [2], etc.) model realistic applications.
As such, this type of benchmarks is expected to provide a more
realistic performance evaluation than synthetic benchmarks, where
individual operations are generated randomly according to some
distribution de�ned in the workload.

While the TPC-* benchmarks work well for the evaluation of
relational, strongly consistent database systems, they are a bad �t
for evaluating eventually consistent key-value stores. The main
issue is that they do not re�ect the way key-value stores are typically
used. For example, some aggregation queries in TPC-W are very
expensive to implement on top of a key-value data model respecting
the speci�cation, which can render the value of experiments useless.

Given the need of evaluating their systems, many system develop-
ers opt for implementing their own version of popular applications,
like Twitter, FusionTicket [3], or even TPC-C/TPC-W. Yet, there is
no standardized way of comparing these ad-hoc implementations
due to di�erent codebases and the lack of a common speci�cation.
The Yahoo! Cloud System Benchmark (YCSB) [4] addresses this
problem by providing a set of standard benchmarks that can be
used to evaluate key-value stores. However, the operations of the
benchmark consists of simple read/write operations, while real-life
applications often use more complex access patterns.

In this paper, we present FMKe, a new application benchmark
tailored to the evaluation of key-value stores providing weak consis-
tency. It is based on a subsystem of the Danish National Healthcare

PaPoC’17, April 23, 2017, Belgrade, Serbia G. Tomás, P. Zeller, V. Balegas, D. Akkoorath, A. Bieniusa, J. Leitão, N. Preguiça

treatment facility

medical sta� patient

pharmacy

hasTreatment hasEvent

hasPrescription

Figure 1: Simpli�ed ER diagram that models FMKe

System (FMK, Fælles Medicinkort), and the workload is de�ned
based on real-life statistics obtained from this production system.
FMKe models the handling of prescriptions assigned to patients.
This information is accessed concurrently by multiple entities, in-
cluding medical facilities, such as hospitals, and pharmacies.

The benchmark can be used to evaluate any storage system
providing weak consistency guarantees, but also includes variants
for evaluating advanced database features, such as highly available
transactions.

In the remainder of this paper we present the data model of the
FMKe benchmark, describe the operations of the workload, and
discuss its implementation and evaluation on top of Antidote [5], a
key-value store that supports highly available transactions under
geo-replication.

2 FMKE BENCHMARK
In this section we introduce the FMKe benchmark. This benchmark
was designed based on a real system that operates at National level
in Denmark, which is used to manage medical information, pre-
scriptions, and treatment information for the population of the
country. Our benchmark focus on the particular aspect of prescrip-
tion management and does not include all operations available the
the real FMK system.

When designing FMKe, we did not have access to the exact
data model used by the original FMK application. Thus, we have
designed the data model (presented below) based on the operations
provided by FMK to manage prescriptions.

2.1 Data Model
FMKe[6] is a system that manages medical information about pa-
tients. In this domain there is a need to keep records for pharmacies,
treatment facilities, patients, prescriptions, patient treatments, and
medical events (such as taking medicine or medical prognosis up-
dates). The benchmark includes a set of application-level operations,
each one of them leading to the execution of a sequence of read and
update operations on these entities. The set of hospitals, pharmacies,
patients and medical sta� act as static entities in the benchmark,
so records of these entities can be populated in data stores prior

to the benchmark execution (and these can be scaled in number to
�t the needs of the system under evaluation). Figure 1 presents a
simpli�ed view of the main entities.

2.2 Workload Operations
Table 1 shows the operations performed by the benchmark together
with their relative frequency. We have developed two variants of
the benchmark with di�erent data layouts. The non-normalized
variant follows the strategy of storing data in a denormalized form,
which allows to serve most reads without joining data from di�erent
records. The other variant stores data in a normalized form, which
leads to smaller object sizes, but requires to join data from multiple
records when reading. Table 1 includes the respective number of
reads and writes for the operations in the two implementations. We
now describe the individual operations.

Create prescription registers a new prescription record that is
associated with a patient, medical sta� and pharmacy. After cre-
ation the prescription is considered to be open (i.e. it was not yet
handled by a pharmacy in order to deliver medicine to the patient).
Process prescription changes the state of a prescription record to
signal that it has been handled, so it transitions to the closed state.
Get sta� prescriptions returns all prescription records that are
associated with a speci�c medical sta� member.
Get pharmacy prescriptions returns all prescription records as-
sociated with a pharmacy.
Get processed prescriptions returns only prescriptions that have
been handled (closed).
Get prescription medication returns the medication for a spe-
ci�c prescription record.
Update prescription medication changes the medication for a
prescription that has not been processed.

2.3 Benchmark Characterization
FMKe models as closely as possible the real production system FMK.
Benchmark operations and their frequency have default values
based in statistics from the real-world system. The benchmark is
naturally a�ected by the number of entities in the data store on
which these operations are performed.

Table 2 presents the values for the parameters used in the re-
sults presented in the next section – the numbers of hospitals and
pharmacies is close to the real numbers, while for patients and
doctors the number is between 1

3 and 1
5 of the real value. In those

experiment, we present results in three di�erent settings where we
vary the number of data centers of the deployment.

The benchmarks can be parameterized to use value that match
the needs of the system being evaluates, either by changing the
number of entities used as well as changing the frequency of each
operation.

3 PRELIMINARY EXPERIMENTAL RESULTS
To show the feasibility of the benchmark, we present some prelim-
inary performance results. To this end we have implemented an
initial prototype of the benchmark, composed by three components:

Clients The clients issue HTTP/REST requests to the appli-
cation server, encoding the application operations (section

FMKe: a Real-World Benchmark for Key-Value Data Stores PaPoC’17, April 23, 2017, Belgrade, Serbia

Non-normalized Normalized
Operation Frequency # reads # writes # reads # writes
Get pharmacy prescriptions 27% 1 0 N 0
Get prescription medication 27% 1 0 1 0
Get sta� prescriptions 14% 1 0 N 0
Create prescription 8% 5 4 5 4
Get processed pharmacy prescriptions 7% 1 0 N 0
Process prescription 4% 4 4 1 1
Update prescription medication 4% 4 4 1 1

Table 1: Number of read and write operations per FMKe operation. For some operations in the normalized variant the number
of reads depends on the current number of prescriptions associated to pharmacy, sta�, etc. (denoted by N); this number varies
over time.

Entity Number
Patients 1,000,000

Hospitals 50
Pharmacies 300

Doctors 5,000
Table 2: Number of entities for a workload targeted at per-
formance evaluation

2.2). This module is implemented using Basho Bench [7],
an open source benchmarking framework.

FMKe application server The FMKe application server re-
ceives client requests, and for each application operation
issues a number of operation to modify the state of the
database.

Database The data of the benchmark is stored in the database.
In our current prototype, we only support Antidote [5].

We ran our experiments in the Amazon Web Service (AWS) in-
frastructure. Each data center instance consists of four m3.xlarge
machines running the Antidote database servers, four m3.xlarge
machines running the FMKe application server and four m3.xlarge
running the Basho Bench workload generator. A m3.xlarge ma-
chine has 4 vCPUs, 15GB of memory and 80 GB of SSD disk. We
used the Ireland, Frankfurt and N. Virginia AWS data centers, with
the following mean round-trip-time between machines in those
data centers: Ireland-Frankfurt: 22.4ms ; Ireland-N.Virginia: 84.9ms ;
Frankfurt-N.Virginia: 89.7ms . The mean round-trip-time between
two machines inside a DC was 0.55ms .

Figure 2 shows a throughput-latency plot for the FMKe bench-
mark on the Antidote system [5]. The plots shows measurements
under three di�erent deployments where we vary the number of
data centers in each deployment. We based the measurements on a
version of FMKe with normalized data layout. The results show that
Antidote scales linearly with the number of DCs. The reason for
this is that the majority of operations in the workload are read-only.
As read-only operations involve only a single DC in Antidote, they
do not generate any additional load on the other DCs. Operations
that update the database generate additional load when forwarding
updates, but the e�cient mechanism for update propagation used

Figure 2: Antidote performance comparison with varying
number of data centers.

in Antidote keeps this additional load low, allowing the throughput
to almost double when we add the second DC.

Figure 3 shows the detailed results for a single experiment, where
it is possible to observe the evolution of throughput and latency
during the complete experiment. These graph are generated by
Basho Bench, and are very useful to understand the behavior of the
system as the database size increases.

4 CONCLUSION AND FUTUREWORK
In this paper we introduced a new benchmark for data stores pro-
viding weak consistency, which is modeled after a wide-area health-
care production system for managing medical prescriptions. We
brie�y presented the data model and operations for this benchmark.
We have described our initial prototype and reported preliminary
performance results obtained with Antidote database.

As next step we plan to provide a precise speci�cation of the
FMKe operations and their functional requirements. From this speci-
�cation we will derive a reference implementation of the benchmark
with bindings for multiple languages. Further, we will de�ne a set
of tests that developers can run to assess the consistency and avail-
ability properties of their system. For instance, these tests would
allow checking whether operations executed atomically, or if the

PaPoC’17, April 23, 2017, Belgrade, Serbia G. Tomás, P. Zeller, V. Balegas, D. Akkoorath, A. Bieniusa, J. Leitão, N. Preguiça

Figure 3: Results for a single experiment (1 DC, 32 clients).

system provides causality. We also aim for mechanisms to measure
data staleness, which is a relevant trade-o� for storage systems
providing weak consistency guarantees and high availability.

Acknowledgements. This work was partially supported by FCT/
MCTES: NOVA LINCS project (UID/CEC/04516/2013) and the Eu-
ropean Union, through projects SyncFree (grant agreement num-
ber 609551) and LightKone (grant agreement number 732505). We
would like to thank Kresten Thorup (Trifork) for his help in the
design of the benchmark.

REFERENCES
[1] The Transaction Processing Performance Council, Benchmark C. http://www.tpc.

org/tpcc/default.asp. Accessed: 2017-02-15.
[2] The Transaction Processing Performance Council, Benchmark C. http://www.tpc.

org/tpcw/. Accessed: 2017-02-15.
[3] Fusion Ticket Solutions Limited. https://github.com/fusionticket. Accessed: 2017-

02-16.
[4] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st

ACM Symposium on Cloud Computing, SoCC ’10, pages 143–154, New York, NY,
USA, 2010. ACM.

[5] AntidoteDB. http://antidotedb.eu. Accessed: 2017-02-15.
[6] FMKe code repository. https://github.com/goncalotomas/fmke. Accessed: 2017-

02-15.
[7] Basho Bench. https://docs.basho.com/riak/kv/2.2.0/using/performance/

benchmarking/. Accessed: 2017-02-15.

Bringing Hybrid Consistency Closer to Programmers
Gonçalo Marcelino
NOVA LINCS, DI, FCT,

Universidade NOVA de Lisboa
Portugal

Valter Balegas
NOVA LINCS, DI, FCT,

Universidade NOVA de Lisboa
Portugal

Carla Ferreira
NOVA LINCS, DI, FCT,

Universidade NOVA de Lisboa
Portugal

ABSTRACT
Hybrid consistency is a new consistency model that tries to combine
the bene�ts of weak and strong consistency. To implement hybrid
consistency, programmers have to identify con�icting operations
in applications and instrument them, which is a di�cult and error
prone task. More recent approaches automatize the process through
the use of static analysis over a speci�cation of the application.

In this paper we present a new tool that is under development
that tries to make the technology more accessible for programmers.
Our tool is based on the same well-founded principles of existing
work, but uses an intermediate veri�cation language, Boogie, that
improves the tool usability and scope in a number of ways. Using
a general language for writing speci�cations makes speci�cations
easier to write and improves expressiveness. Also, we leverage the
language to add a library of CRDTs, which allows the programmer
to solve con�icts without coordination. We discuss the features that
we have already implemented and how they contribute to improve
the technology.

CCS CONCEPTS
• Software and its engineering → Automated static analy-
sis; Consistency; • Computer systems organization → Cloud
computing;

KEYWORDS
Static veri�cation; replication; integrity invariants
ACM Reference format:
Gonçalo Marcelino, Valter Balegas, and Carla Ferreira. 2017. Bringing
Hybrid Consistency Closer to Programmers . In Proceedings of PaPoC’17,
Belgrade, Serbia, April 23, 2017, 4 pages.
DOI: http://dx.doi.org/10.1145/3064889.3064896

1 INTRODUCTION
Replication is a fundamental technique for achieving better avail-
ability, scalability, and fault tolerance in contemporary storage sys-
tems. Many of these systems use a combination of weak and strong
consistency models [2, 8, 11], coined as hybrid consistency in [6],
to coordinate the execution of operations when the correctness of
applications is at risk, and leverage the bene�ts of asynchronous
execution when operations are safe.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’17, Belgrade, Serbia
© 2017 ACM. 978-1-4503-4933-8/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3064889.3064896

To use hybrid consistency, programmers need to identify the ap-
plication invariants that have to be maintained at all times, and
instrument the application code to use coordination when neces-
sary. Choosing the “right” coordination is a di�cult task. For that,
programmers have to reason about the concurrent e�ects of each
operation in the application, in order to determine which opera-
tions require coordination, a complex process when dealing with
large applications.

More recently a few static analysis tools have been proposed [2,
6, 9] that aid programmers to determine which operations have
to be coordinated in order to maintain the application’s correct-
ness. These tools receive the speci�cation of an application, and
output the pairs of operations that might break the correctness of
the application if executed concurrently. With that information,
it is possible to derive sets of tokens, that can be associated with
operations, to pin-point where in an application the coordination is
required. However, existing tools have limitations that constitute a
barrier for their adoption by practitioners: they use domain-speci�c
languages not general enough for specifying the behavior of com-
plex applications; they only support basic data types; and, identify
con�icts at the grain of operations, leading to overly-conservative
executions.

In this paper, we present a new tool that we are developing
and discuss how it improves the usability of existing tools in a
number of aspects. Our goal is to build a tool that can be used in
practice to help programmers build correct applications using a
hybrid consistency approach. As in [9] our tool automates the proof
rule de�ned and proved sound in [6], ensuring that the coordination
generated for a given application is correct.

In our tool the speci�cations are written in Boogie [3], a ver-
satile intermediate veri�cation language (used by Dafny [7] and
VCC [4]). Boogie generates a set of veri�cation conditions, from an
input speci�cation, and then uses a STM solver [5] to check those
veri�cation conditions. Opting for a veri�cation language means
giving the programmer the ability to easily specify more complex
behaviors for operations, something lacking in previous works.
We provide support for using complex data types, including those
provided by the language or speci�ed by the programmer. One
particular case, is that we allow specifying con�ict-free replicated
data types (CRDTs) [10], which can be used to solve con�icting
pairs of operations without coordination.

Furthermore we also propose a �ne grained approach for oper-
ation coordination. Previous tools suggested the coordination of
pairs of operations when their execution could potentially inval-
idate the invariant of the application under scrutiny. Our novel
approach takes into account the parameters of these operations,
advising operation coordination only for speci�c combinations of
parameters, allowing the pairs of operations to execute concurrently

PaPoC’17, April 23, 2017, Belgrade, Serbia Gonçalo Marcelino, Valter Balegas, and Carla Ferreira

in all remaining cases. This approach permits more concurrency,
while still ensuring the preservation of the application’s invariants.

Finally, when the tool detects a con�icting pair, it is capable of
providing a counter-example that programmers can use to correct
the application.

In the remaining of this paper we present each of these contri-
butions in detail, and discuss the bene�ts that they provide to the
tool.

2 SYSTEM MODEL
We consider a database system composed by a set of objects fully
replicated over multiple data centers. An application is de�ned as a
set of high-level operations and a set invariants that express well-
formedness rules of the database state. Each operation is de�ned as
a sequence of reads and updates, and has an associated precondi-
tion stating the conditions that have to be guaranteed for its safe
execution. When an application submits an operation to the local
replica, the precondition is checked on the local database state. If
the precondition holds, the operation is executed locally, and its
e�ects are propagate asynchronously to remote replicas. Otherwise,
the operation has no e�ect. We assume that the propagation of
operation e�ects respects causality.

We use a token system as the abstract coordination mechanism
as de�ned in [6]. The token system consists of a set of tokens
and a symmetric con�ict relation over tokens. Each operation may
have an associated set of tokens, ensuring that other operations
with con�icting tokens cannot be executed concurrently and their
execution has to be coordinated.

3 TOOL OVERVIEW
To apply our analysis the programmer has to annotate the appli-
cation code with a speci�cation. The speci�cation describes the
database state, data invariants, preconditions and e�ects of each
operation. To illustrate the static analysis, we use as running ex-
ample a distributed tournament management application. This ap-
plication allows the following operations to be executed by its
users: addTournament (t) and remTournament (t) register and re-
move tournament t , respectively, addPlayer (p) registers player p,
and enroll (p, t) enrolls player p in tournament t . Additionally, the
application is subject to the following integrity invariant: if player
p is enrolled in tournament t , both player p and tournament t must
be registered.

The input speci�cation is then analysed in three distinct steps.
Safety analysis This �rst step ensures that none of the speci-

�ed operations are able to invalidate the application’s invariant by
executing in standalone manner without any concurrency. This is
done to validate the correction of the speci�cation given as input.
In our example, if operation remTournament (t) did not have the
precondition requiring that no player is enrolled in tournament t ,
the operation would fail the safety analysis.

Commutativity analysis This second step checks commuta-
tivity between all pairs of operations and outputs the subset of
these pairs that are not commutative, as well as the sets of to-
kens needed to address this issue. This is achieved by executing all
pairs of operations in both orders and, afterwards, verifying if the
state after these executions is the same. In our example, operations

addTournament (t) and remTournament (t) do not commute, while
addPlayer (p) and addTournament (t) are commutative.

Stability analysis This last step provides the programmer with
the set of pairs of operations that cannot execute concurrently, as
they can break the application’s invariant, as well as the sets of
tokens needed to avoid their concurrent execution. This analysis
veri�es the stability of each operation precondition against all other
operations e�ects. In practice it veri�es if the e�ects of any opera-
tion invalidates the precondition of the operation under analysis.
As an example, the precondition of enroll (p, t) is not stable under
concurrent execution of remTournament (t), while the precondition
of addTournament (t) is stable under the e�ects of enroll (p, t).

4 TOKEN GENERATION
As brie�y explained, the tool generates a set of tokens that are
used to prevent con�icting pairs of operations from executing con-
currently. The tokens that our tool generates are based on the
parameters of each operation. This allows more �ne-grained con-
currency control than previous approaches, which only identify
con�icts per operation. More speci�cally, the tool tests di�erent
parameter values for each pair of operations, identifying in which
cases di�erent combinations of parameters might invalidate the in-
variants. We leverage the veri�cation engine to detect e�ciently the
problematic combination of parameters. The output of the tool is a
token system as described before, indicating the relations between
con�icting parameters. Taking as an example the pair of operations
enroll (p, t) and remTournament (t), the tool outputs that a token
must be used if parameter t is the same in the two operations. A
complete example is shown in the Appendix A.

Finally, as an alternative to automatically generating the tokens,
the programmer can de�ne her own token system. The tool is then
able to determine if the provided token system ensures commuta-
tivity and stability of the application’s operations, while advising
the programmer to remove tokens that are not needed to assert
these properties, if any. As reducing the number of tokens decreases
coordination and leads to a more scalable application

5 CRDT SPECIFICATION
CRDTs are replicated data types that specify well-de�ned conver-
gence rules that can be used to solve concurrency con�icts. Previous
work [2, 6] has demonstrated that these data types can be used to
solve some con�icting pairs of operations without using coordina-
tion. However, the tools from those works do not provide support
for specifying CRDTs.

Our tool allows specifying CRDTs and use them during the
analysis process. Moreover, we have de�ned a library of generic
CRDT types that can be used by the programmer. With this library
the programmer has the choice between using the tokens or CRDTs,
as a way to solve con�icting operations. In the Appendix B we
provide a speci�cation of the tournament application that uses a
remove-wins CRDT set.

6 CONCLUSION
We have presented a tool to help programmers take full advantage
of the hybrid consistency model. The tool is based on intermediate
veri�cation language, Boogie, which empowers programmers with

Bringing Hybrid Consistency Closer to Programmers PaPoC’17, April 23, 2017, Belgrade, Serbia

the ability to write general code for specifying applications. We
demonstrated the usefulness of the approach by adding support
for CRDTs, as an alternative mechanism for solving con�icting
pairs. Also, we have extended the existing algorithm for detecting
con�icting pairs with support for parameter analysis, which allows
more concurrency in applications.

Future work will be focused on giving programmers the ability
to certify already existing source code using the speci�cations given
to the tool, as this would allow the programmer to be sure that
their speci�cation re�ects what is actually implemented. We plan
to use available Boogie APIs for general purpose languages, as
Java [1] and C [4], to support veri�cation of real code. This is an
important aspect for bridging the gap between speci�cation and
implementation.

We also plan to explore ways to reduce the annotation e�ort,
since even with a restricted number of case studies some speci�-
cation patterns emerge. These patterns could be explored to help
programmers writing speci�cations, by automatically generating
part of the annotations or at least by proving a set of best practices
to be followed.

Acknowledgements. This work was partially supported by FCT-
MCTES-PT NOVA LINCS project (UID/CEC/04516/2013), FCT/MCT
SFRH/BD/87540/2012, EU FP7 SyncFree project (609551), and EU
H2020 LightKone project (732505).

REFERENCES
[1] Java parser for the Boogie intermediate veri�cation language. https://github.

com/martinschaef/boogieamp. (????). Accessed Feb-2017.
[2] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça,

Mahsa Najafzadeh, and Marc Shapiro. 2015. Putting Consistency Back into Even-
tual Consistency. In Proceedings of the Tenth European Conference on Computer
Systems (EuroSys ’15). ACM, New York, NY, USA, Article 6, 16 pages.

[3] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M.
Leino. 2006. Boogie: A Modular Reusable Veri�er for Object-Oriented Programs.
In Formal Methods for Components and Objects: 4th International Symposium,
FMCO 2005, Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem-
Paul de Roever (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 364–387.

[4] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. 2009. VCC: A
Practical System for Verifying Concurrent C. In Theorem Proving in Higher Order
Logics: 22nd International Conference, TPHOLs 2009, Stefan Berghofer, Tobias Nip-
kow, Christian Urban, and Makarius Wenzel (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 23–42.

[5] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An e�cient SMT solver.
In Tools and Algorithms for the Construction and Analysis of Systems. Springer,
337–340.

[6] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc
Shapiro. 2016. ’Cause I’m Strong Enough: Reasoning About Consistency Choices
in Distributed Systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2016). ACM, New
York, NY, USA, 371–384.

[7] K. Rustan M. Leino. 2010. Dafny: An Automatic Program Veri�er for Functional
Correctness. In Logic for Programming, Arti�cial Intelligence, and Reasoning: 16th
International Conference, LPAR-16, Edmund M. Clarke and Andrei Voronkov
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 348–370.

[8] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. 2012. Making Geo-replicated Systems Fast As Possible,
Consistent when Necessary. In Proc. 10th USENIX Conf. on Operating Systems
Design and Implementation (OSDI’12). USENIX Association, Berkeley, CA, USA,
265–278.

[9] Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc
Shapiro. 2016. The CISE Tool: Proving Weakly-consistent Applications Correct.
In Proceedings of the 2Nd Workshop on the Principles and Practice of Consistency
for Distributed Data (PaPoC ’16). ACM, New York, NY, USA, Article 2, 3 pages.

[10] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Con�ict-free Replicated Data Types. In Proc. 13th Int. Conf. on Stabilization, Safety,

and Security of Distributed Systems (SSS’11). Springer-Verlag, Berlin, Heidelberg,
386–400.

[11] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transac-
tional Storage for Geo-replicated Systems. In Proc. 23d ACM Symp. on Operating
Systems Principles (SOSP ’11). ACM, New York, NY, USA, 385–400.

A TOURNAMENT EXAMPLE
This section starts by showing the input Boogie speci�cation1 for
the tournament application. Although the speci�cation code can
be verbose a few patterns emerge through the speci�cation code.
These patterns could be helpful in reducing the programmer’s an-
notation e�ort. One such pattern appears in the ensures clause
that expresses the e�ects of operations. The update of a state set
variable for a given argument is re�ected in a ensures clause with
a forall clause stating that the state variable for that argument
is updated, while the remaining objects are left unchanged. This
part of the clause for the objects not updated could be generated
automatically by the tool, reducing the speci�cation e�ort.

Input speci�cation
type Tournament;

type Player;

var enrollment: [Player, Tournament] bool;

var tournaments: [Tournament] bool;

var players: [Player] bool;

function invariant() returns(bool)

{

forall t: Tournament, p: Player ::

enrollment[p,t] ==> tournaments[t] && players[p]

}

procedure addTournament(t1: Tournament)

modifies tournaments;

requires true;

ensures forall t: Tournament ::

t == t1 ==> tournaments[t1] == true

&&

t != t1 ==> tournaments[t] == old(tournaments)[t]; { }

procedure remTournament(t1: Tournament)

modifies tournaments;

requires !exists p: Player :: enrollment[p, t1];

ensures forall t: Tournament ::

t == t1 ==> tournaments[t1] == false

&&

t != t1 ==> tournaments[t] == old(tournaments)[t]; { }

// addPlayer and remPlayer can be similarly defined.

procedure enroll(p1: Player, t1: Tournament)

modifies enrollment;

requires players[p1] == true && tournaments[t1] == true;

ensures forall p: Player, t: Tournament ::

p == p1 && t == t1 ==> enrollment[p1,t1] == true

&&

p != p1 || t != t1 ==> enrollment[p,t] == old(enrollment)[p,t]; { }

Safety analysis
With the previous speci�cation the safety analysis does not report
any errors. However, if we remove the precondition players[p1]
== true from operation enroll, an invariant violation is reported.
In this case, Boogie can build a counter-example model to help the
programmer in correcting her speci�cation.

1For illustrative reasons we removed some parenthesis in clauses requires and
ensures.

PaPoC’17, April 23, 2017, Belgrade, Serbia Gonçalo Marcelino, Valter Balegas, and Carla Ferreira

enrollments -> [Player,Tournament]Bool

players -> [Player]Bool

tournaments -> [Tournament]Bool

p1 -> Player

t1 -> Tournament

Select_[Player,Tournament]Bool -> {

[Player,Tournament]Bool p1 t1 -> true

else -> true

}

Select_[Tournament]Bool -> {

[Tournament]Bool t1 -> true

else -> true

}

Select_[Player]Bool -> {

[Player]Bool p1 -> false

else -> false

}

Stability analysis
Conflicting operations:

{ enroll(p, t), remPlayer(p) }

{ enroll(p, t), remTournament(t) }

Commutative analysis
Commutativity is only veri�ed for pairs of operations that do not
fail the stability analysis.
Non-commutative operations:

{ addTournament(t), remTournament(t) }

{ addPlayer(p), remPlayer(p) }

Generated tokens
enroll(p,t) : { token_ep(p), token_et(t) }

remTournament(t) : { token_rt(t) }

addTournament(t) : { token_at(t) }

remPlayer(p) : { token_rp(p) }

addPlayer(p) : { token_ap(p) }

Conflict relation:

token_ep(p) : token_rp(p)

token_rt(t) : token_et(t), token_at(t)

token_at(t) : token_rt(t)

token_rp(p) : token_ep(p), token_ap(p)

token_et(t) : token_rt(t)

token_ap(p) : token_rp(p)

B AVOIDING COORDINATION WITH CRDTS
Generic remove-wins CRDT
type Selector;

type CRDTElement = <a>[a]bool;

type CRDT = [Selector]CRDTElement;

const unique add: Selector;

const unique remove: Selector;

axiom(forall s:Selector :: s == add || s == remove);

function CRDTAdd<a>(elem: a, set: CRDT, oldSet: CRDT) returns(bool)

{

forall e:a :: e == elem ==> set[add][elem] == true

&&

e != elem ==> set[add][e] == oldSet[add][e]

&&

forall e:a :: set[remove][e] == oldSet[remove][e];

}

function CRDTRemove<a>(elem: a,

set: CRDT, oldSet: CRDT) returns(bool)

{

forall e:a :: e == elem ==> set[remove][elem] == true

&&

e != elem ==> set[remove][e] == oldSet[remove][e]

&&

forall e:a :: set[add][e] == oldSet[add][e];

}

function CRDTInSet<a>(element: a, set: CRDT) returns(bool)

{

set[add][element] && !set[remove][element];

}

Input speci�cation with CRDT sets
type Tournament;

type Player;

var enrollment: [Player, Tournament] bool;

var tournaments: CRDT;

var players: CRDT;

function invariant(enrollment: [Player,Tournament] bool,

tournaments: CRDT,

players: CRDT) returns(bool)

{

forall t: Tournament, p: Player ::

enrollment[p,t] ==> CRDTInSet(p, players)

&&

CRDTInSet(t, tournaments)

}

procedure addTournament(t1: Tournament)

modifies tournaments;

requires true;

ensures CRDTAdd(t1, tournaments, old(tournaments)); { }

procedure remTournament(t1: Tournament)

modifies tournaments;

requires !exists p: Player :: enrollment[p, t1];

ensures CRDTRemove(t1, tournaments, old(tournaments)); { }

// addPlayer and remPlayer can be similarly defined.

procedure enroll(p1: Player, t1: Tournament)

modifies enrollment;

requires CRDTInSet(p1, players) && CRDTInSet(t1, tournaments);

procedure enroll(p1: Player, t1: Tournament)

ensures forall p: Player, t: Tournament ::

p == p1 && t == t1 ==> enrollment[p1,t1] == true

&&

p != p1 || t != t1 ==> enrollment[p,t] == old(enrollment)[p,t]; { }

Stability analysis
Conflicting operations:

{ enroll(p, t), remPlayer(p) }

{ enroll(p, t), remTournament(t) }

Commutative analysis
All non-con�icting operations are commutative.

Generated tokens
enroll(p,t) : { token_ep(p), token_et(t) }

remTournament(t) : { token_rt(t) }

addTournament(t) : { }

remPlayer(p) : { token_rp(p) }

addPlayer(p) : { }

Conflict relation:

token_ep(p) : token_rp(p)

token_rt(t) : token_et(t)

token_rp(p) : token_ep(p)

token_et(t) : token_rt(t)

ACGreGate: A Framework for Practical Access
Control for Applications using Weakly Consistent

Databases

Mathias Weber1 and Annette Bieniusa2

1TU Kaiserslautern, Kaiserslautern, Germany, m_weber@cs.uni-kl.de
2TU Kaiserslautern, Kaiserslautern, Germany, bieniusa@cs.uni-kl.de

Abstract

Scalable and highly available systems often require data stores
that offer weaker consistency guarantees than traditional relational
databases systems. The correctness of these applications highly de-
pends on the resilience of the application model against data inconsis-
tencies. In particular regarding application security, it is difficult to
determine which inconsistencies can be tolerated and which might lead
to security breaches.

In this paper, we discuss the problem of how to develop an ac-
cess control layer for applications using weakly consistent data stores
without loosing the performance benefits gained by using weaker con-
sistency models. We present ACGreGate, a Java framework for im-
plementing correct access control layers for applications using weakly
consistent data stores. Under certain requirements on the data store,
ACGreGate ensures that the access control layer operates correctly
with respect to dynamically adaptable security policies. We used AC-
GreGate to implement the access control layer of a student manage-
ment system. This case study shows that practically useful security
policies can be implemented with the framework incurring little over-
head. A comparison with a setup using a centralized server shows the
benefits of using ACGreGate for scalability of the service to geo-scale.

1 Introduction

The ongoing globalization and digitization of services forces companies to
build highly available and scalable applications that operate with low la-
tency anywhere on earth. By their nature, these applications need to be
distributed and replicated on a global scale. System designers choose weaker
consistency guarantees for applications to gain the required performance and
availability. Typically, the data stores underlying these types of systems are

1

key-value stores where objects are addressed by keys and have a value that
can be read and updated. To provide better performance and fail-over for
possible outages, the data is replicated to different locations. Because of
weaker consistency guarantees offered by the store, operations can be is-
sued on any of the replicas without delay and the modifications of the data
state are usually asynchronously sent to the other replicas. Data stores sup-
porting this model are for example Amazon Dynamo[13], Riak KV[6] and
Cassandra[1]. But weakening consistency guarantees brings new challenges
to the application design and implementation as this model makes it difficult
to reason about application correctness.

Access Control One important topic of application design is access con-
trol. As definition of access control, we follow the definition provided in prior
work[20].

In an application, we distinguish two kinds of operations, data opera-
tions and policy operations. Data operations read or modify the application
data, and policy operations read or modify permissions of users on objects.
Although the need for correct access control is indisputable, implementing
it is a daunting task. This is reflected by the OWASP Top 10, an index
of the ten security vulnerabilities most often found in web applications. In
the OWASP[5] Top 10 from 2013, “Missing Function Level Access Control”
was ranked 7th, in the 2017 release candidate, “Broken Access Control” was
ranked 4th.

Implementing access control for an application using a weakly consistent
datastore is difficult because the requirements of access control seem to be
in conflict with the inherent properties of weak consistency. The program-
mer’s intuition is that changes to permissions of a user for an object should
be effective immediately in order to provide protection for subsequent data
operations which may add sensitive data to the store. Further, changing
the access control rules should be possible in order to adapt the applica-
tion to organizational changes. For example, new employees may enter a
company, existing employees may leave. Even the structure of the company
might change: departments might get restructured, adding or discharging
responsibilities. But despite changes, the decisions on all servers need to be
consistent with the current access control rules.

For some applications, access control is deeply embedded in the design
of the application. For example, friend lists in social networks provide a
mechanism to influence what data becomes visible to other users. A classical
example is the social network where Alice added her boss Bob in her friend
list, and afterwards she wants to hide her photos of the last party from him.
Alice removes Bob from her friend list and afterwards uploads the photos,
assuming that Bob does not have access to her photos anymore. But on
some server, the updates might get applied in a different order giving Bob

2

temporary access to the photos. This anomaly leaks data and is the result
of the weaker ordering guarantee of the data stores.

As the examples show, the access control system should be dynamic and
at the same time consistent to avoid data leakage. These dynamic changes
should also be reflected in the decisions to protect the data stored in the
system from being leaked. Operations modifying the access control policy
can make up a considerable part of the overall operations performed in the
system.

Weaker consistency guarantees further result in possible conflicts of con-
current permission assignments. For correct access control, it is often not
easy to see how these conflicts can be solved and which conflict-resolution
strategies lead to incorrect access control decisions and hence to data leakage.

As an example, we can consider the policy that a consultant may not be
responsible for two companies. When instantiating Charly as consultant for
company A, someone else might concurrently instantiate Charly as consul-
tant for company B. On the local server, the threat of breaking the security
policy may not be detectable since the updates are initially only visible on
some other replica. When solving this concurrency conflict, one has to be
very careful not to end up in a situation where Charly is consultant for both
companies.

Contributions In this paper, we discuss possible architectures to deploy
access control in applications using weakly consistent data stores (Section 2).
We present requirements for the datastore which make it possible to imple-
ment access control correctly, and we introduce ACGreGate, a Java frame-
work for implementing such an access control layer (Section 3). To the best
of our knowledge, ACGreGate is the first framework which allows to build
access control layers for applications using a weakly consistent datastore.
The code of ACGreGate is available at https://softech-git.informatik.
uni-kl.de/mweber/acgregate-java. Our case study shows that practical
applications can be secured using ACGreGate even for complex access con-
trol policies with data dependencies (Section 4).

2 Access Control Layer Deployment

In the introduction we have seen that many invariants that are easily im-
plementable under strong consistency are not available in weakly consistent
datastores like bounds on values due to the lack of a globally total order on
operations. How can we implement access control in environments like that?
We can either take a centralized approach where a central server is respon-
sible for keeping the permission data consistent or we can take a distributed
approach which is more complex but may yield better performance. In the
following, we discuss both approaches in detail.

3

Application Servers
Access Control Server

Figure 1: Central access control server architecture.

Central Access Control Server Following the requirement of a consis-
tent access control decision leads to a design as depicted in Figure 1 where
a central server makes the access control decision for all distributed copies
of the application. This architecture is common in authentication infras-
tructures. The modifications of the access control rules are handled by the
central access control server. All operations performed on remote servers
executing the target application are sent to the access control server to make
the decision whether the operation should be accepted. This architecture
solves the problem of inconsistencies in the access control policy because
there is only one copy of the policy on the central server which handles re-
quests in a linearized way. Since all access control decisions are made by this
server, we cannot have data leakage because of inconsistent decisions.

The problem with this architecture becomes clear when evaluating the
performance (cf. Section 5). Typically, the performance of an application
in our scenario is bound by the performance of the storage backend. If the
access control server is not running on the same machine as this backend
nor is collacated on a fast local network, the performance of the application
becomes bound by the network latency. This yields an unacceptable per-
formance overhead compared to a system that does not implement access
control. A setup relying on a central access control server is therefore infea-
sible even for non-large scale systems where delays between nodes are in the
order of 10 ms.

Local Consistent Access Control Server What about using a primary
backup model for the access control layer (cf. Figure 2)? In this setting, the
policy state on all replicas is kept in sync. But the relation between data
and policy is not maintained properly. Consider the case that we want to
declassify information before publishing it. If we apply the new policy to the
old snapshot of the data, we leak classified information. Hence, we need to

4

Master

Slave Slave

Slave

modify policy
commit

commit

commit

Figure 2: Local consistent access control server architecture.

keep track of all policy modifications and have to apply them consistently to
their respective data snapshot.

Another problem is that the strongly consistent policy state reduces the
availability. When the application tries to modify the access control policy
during a partition of the network, either the master replica or one of the
slave replicas is not reachable, thus delaying the execution of the policy
modification. Since the application cannot continue without the updated
policy, the application is blocked until the network partition is resolved.

Combined Policy and Data State As the discussion shows, there is a
strong inherent coupling of permissions and data. We have already shown
in prior work[19] that correct access control can be established by putting
the policy and data state in the same weakly consistent datastore. Our
definition of access control is given in [20] and is based on the fact that
policy modifications should become active after they have been issued and
until the same policy is modified again. This property can be implemented
without reverting to strong consistency or establishing global invariants.

3 Access Control Implementation

The model presented in [19] describes the correctness criteria for access con-
trol in weakly consistent information systems according to the above men-
tioned access control semantics. But there is a considerable gap between the
theoretical model and an implementation of this model. In the following, we
show how the different correctness criteria can be met by an implementation.

5

3.1 Requirements derived from the Correctness Condition

The theoretical model considers possible traces of the system. Operations
performed by the system need to adhere to the access control policy at the
time of the operation execution. Given a concrete trace of a system, this
property is straight-forward to verify: We iterate over the operations in the
trace and compute the policy based on the policy modification performed
and visible at that time and check whether the operation was permitted.

When implementing this model in a real application-level access control
system, the task changes. Instead of checking an existing trace, we need to
make sure that only operations that are allowed by the current access con-
trol policy are actually executed by the system; the operations not permitted
should be rejected by the access control layer. This ensures that every result-
ing trace of the system is valid according to the theoretical model of correct
access control.

In order to be able to implement correct access control, we will now derive
several prerequisites on the context. The correctness criterium consists of
two parts that we will discuss separately: Retaining the protection relation,
and correctness of the resolution of conflicts because of concurrent policy
modifications.

Retaining the protection relation All policy modifications visible when
executing a data modification need to be visible on a replica, before the data
operation can be applied. The assumption is that policy modifications can
protect subsequent data modifications. By enforcing that the policy modifi-
cations is visible before applying that data modification, the model ensures
that protected data remains protected and does not leak because of an out-
dated access control policy. This relation between a policy modification and
a subsequent data modification is known as protection relation. As hinted in
[19], the protection relation is part of the per-object causality relation. This
relation holds between updates u1 and u2 on the same object in the data
store if u1 was visible when update u2 was executed or the other way round.
If a data store retains the causality relation such that u1 is always visible
before u2, we say that the data store is causally consistent. As the example
shows, support for causal consistency in the data store is one requirement
for being able to implement the access control model correctly.

Causal consistency is known to be the strongest consistency criterion that
can still be implemented in a highly-available way. Several data stores imple-
ment causal consistency, for example COPS [16], Orbe [14], ChainReaction
[8], GentleRain [15], and Antidote [7, 12].

Conflict Resolution The second part of the correctness criterion for ac-
cess control is concerned with solving the conflicts introduced by concurrent
policy modifications in a conservative manner. The policies are modeled in

6

form of a set of permissions. Each user has for each object in the store a
set of permissions on this object. These permission sets may be updated by
multiple users concurrently, which can lead to inconsistencies. The required
semantics of the data type is already given in [19] in form of the specification
of a conflict-free replicated data-type (CRDT). For two sets of permissions
s1 and s2 concurrently assigned for the same user and the same object, the
Policy CRDT takes the intersection of s1 and s2. This corresponds to tak-
ing only those permissions that both updates agreed on. This semantics
can be easily implemented in a data store supporting CRDTs by taking the
implementation of a multi-value register and modifying the read operation.
A multi-value register retains all concurrently assigned values. Assignments
to the register only replace those values visible when the operation is exe-
cuted on the data store. In case of the Policy CRDT, this yields both sets
of permissions that have been assigned concurrently. We can compute the
intersection of these sets as the result of the read operation.

3.2 Requirements of an Online Check

In the theoretical model, the decision procedure operates on the same snap-
shot of data and policies as the operation to be executed. When implement-
ing the model, we have to make sure to preserve this relation between policy
and data state. Separating the operations and thereby working on different
snapshots of data and policy state can lead to incorrect behavior.

One scenario is that we base our decision on an outdated policy. As al-
ready discussed with relation to the theoretical model, policy modifications
are usually used to protect data in the store. A policy modification might
restrict access to confidential information which was added to the store after
the policy modification. If this restriction is not reflected in the outdated
policy, the access to the confidential information might be granted to an
unauthorized user. The other way round, a data modification might have
declassified information which is then safe to be read. If we operate on out-
dated data, this data might still reflect the confidential information because
the declassifying operations are missing, which again leads to data leakage.
Other replicas accept concurrent operations and these operations can in gen-
eral get visible at the local replica at any time. The conclusion is that there
is no safe order in which we can read the policy and execute the operation
to be checked. Both operations need to happen atomically.

Atomic operations are supported in some weakly consistent data stores
as highly available transactions (HATs) [11, 9, 7]. HATs support atomicity
without reducing availability. The main difference to strongly consistent
transactions is that HATs do not guarantee serializability of the updates, but
the usage of CRDTs solves the problem of conflicting concurrent updates.
The Cure protocol[7] for example supports transactional causal+ consistency,
an extension of causal consistency with highly available transactions.

7

Antidote Client

ACGreGate

Antidote

Application
Decision Procedure

data modifications
data reads

policy modifications
policy reads

Access Monitor

data policies

Decision Interface

Figure 3: Architecture of ACGreGate.

To summarize, in order to implement our framework for correct access
control in applications using weakly consistent data store, we require from the
underlying datastore to support causal consistency, CRDTs as data model
and transaction support for atomic multi-object updates. All of these prop-
erties are supported by the Cure protocol[7].

3.3 Framework Implementation

ACGreGate is a framework for correct access control layers of applications
written in Java, that use Antidote as datastore. Antidote[12] is an open-
source implementation of the Cure protocol written in Erlang with a variety
of client libraries for different programming languages. We built our frame-
work ACGreGate on top of this provided infrastructure for evaluation.

We implemented the Policy CRDT (cf. Section 3.1) and included it
in Antidote’s CRDT library. Antidote offers a Java client, which allows
applications to connect to Antidote and execute update and read operations
based on the provided CRDTs. We implemented ACGreGate as an extension
to this Antidote Java client library. The architecture of ACGreGate (Figure
3) is described in the following paragraphs in detail.

8

public interface DecisionProcedure {
boolean decideRead(ByteString currentUser, AntidotePB.ApbBoundObject object,

Object userData, SecurityLayers layers);

boolean decideUpdate(ByteString currentUser, AntidotePB.ApbBoundObject
object, AntidotePB.ApbUpdateOperation op, Object userData, SecurityLayers
layers);

boolean decidePolicyRead(ByteString currentUser, AntidotePB.ApbBoundObject
key, ByteString user, Object userData, SecurityLayers layers);

boolean decidePolicyAssign(ByteString currentUser, AntidotePB.ApbBoundObject
key, ByteString user, Collection<ByteString> newPolicy,
Collection<ByteString> oldPolicy, Object userData, SecurityLayers layers);

LayerDefinition requestedPolicies(ByteString currentUser,
AntidotePB.ApbBoundObject object);

}

Listing 1: The DecisionProcedure interface.

Decision Procedure To implement the online check, ACGreGate inter-
cepts all operations sent by the client library to the Antidote database and
processes them by an access control monitor. This monitor takes an im-
plementation of a decision procedure to make the access control decisions.
The decision procedure is application dependent and corresponds to the se-
curity policy of the application. In principle, the decision procedure takes
the operation, the currently acting user, and the permissions of this user
and decides, whether the operation is allowed to be executed or not. In the
framework implementation, the decision procedure is implemented as a class
implementing the DecisionProcedure interface which can be seen in Listing 1.

The decision procedure is split up for convenience into methods to decide
about read and update operations as well as policy read and policy assign
operations. Depending on the type of operation, different parameters are
provided to the decision procedure, most notably the user performing the
operation and information about the operation itself. Access to the current
permissions of the acting user is provided using the concept of security layers.
The concept behind security layers is best described based on an example.

In our model, each user has a single set of permissions on an object. In
practice, many applications have hierarchical data structures and users are
given permissions on different layers of this hierarchy. A simple example is
a university with lecturers. A lecturer gives a lecture and has full access to
all data regarding this lecture. A teaching assistant supervises the exercise
of the lecture. Tutors may be employed to mentor a group of students in
a particular exercise session. Regarding the data of a student participant,

9

users may have permissions from different levels. A lecturer has the per-
mission to access the data of any participant of the exercise if she reads the
corresponding lecture. An assistant of the exercise has permission to ac-
cess the participant’s data if he is the assistant of the participant’s exercise.
Finally, a tutor may access the participant’s data only if she is the partici-
pant’s tutor. In the datastore, this hierarchy can be split into objects with
key references. If we would only allow a single permission set per user and
object, we would have to copy all permissions on the lecture to the exercise
of this lecture and copy all permissions of the exercise to all participants
of this exercise. For registering new participants, we would have to set the
permissions on the lecture and exercise, as well. This approach is error prone
and complex. Instead, we allow to define the hierarchy for an object in form
of a LayerDefinition.

The definition of a layer consists of a name for the layer and the key of
the object the layer refers to. A LayerDefinition can contain multiple layers.
The definition of the layers is transformed into a SecurityLayers object which
allows access to the permissions of the currently acting user on all objects
defined in the the LayerDefinition. The complete set of permissions for a user
on an object can be computed by taking the union of the permissions on
all layers. This approach allows to avoid redundancies in the permission
assignments, but still gives access to the complete set of permissions in a
well-defined way.

Operation Constraints The key-value data stores we consider support
CRDTs which are in essence data types that can safely be used in an un-
synchronized distributed manner. The operations on a CRDT object are
typically on a higher level than in strongly consistent datastores. For ex-
ample, Counter CRDTs allow to increment or decrement the counter and to
read the current value, Set CRDTs allow to add and remove elements and
Map CRDTs allow to update the value of a specific key in the map. Access
control policies on the data level of such a datastore usually restrict these
operations and describe which properties the operations should have.

For maps, we might want to restrict which keys should be updatable and
which key bindings should be removable. For sets, we might want to restrict
which elements should be addable or removable. ACGreGate supports im-
plementing these constraints in the implementation of a decision procedure
by providing a domain specific language to describe these restrictions. An
example of such constraints can be seen in Listing 2.

The constraint specifies that the operation needs to be a map update
(isMapUpdate(...)). The additional constraints are that only the key "participants"
may be updated and no key-value mappings may be removed (noMapRemoves).
The update of the key "participants" is again restricted to be a set update
(isSetUpdate(...)). Additional constraints regarding the update of the partic-

10

AntidotePB.ApbUpdateOperation op = ...;
String studentid = ...;

boolean mayParticipate = isMapUpdate(and(
assignsOnly("participants"),
constrainAssigns(keyConstrain("participants",
isSetUpdate(
or(
and(
setAddsOnly(studentid),
noSetRemoves

),
and(
setRemovesOnly(studentid),
noSetAdds

)
)))),

noMapRemoves)).appliesTo(op);

Listing 2: Constraint language examples.

ipant set are that either the student identification number may be added
to the set (setAddsOnly(studentid)) and no elements may be removed from
the set (noSetRemoves), or the other way round. This constraint can be
checked against the operation provided as parameter to the decision proce-
dure (.appliesTo(op)). In the context of the case study presented in Section
4, the semantics of the constraint is that students can add themselves as
participants to an exercise group.

Datastore Layout To guarantee atomicity and causal consistency of data
and policy updates, we persist the permission sets together with the data in
the datastore. Because the permissions should only be modifiable using spe-
cial access control operations, these sets need to be isolated from the other
data in the data store. Antidote supports buckets as name spaces for keys
in the key value store. These buckets are used in ACGreGate to achieve the
isolation between policy and data state. The bucket of the intercepted oper-
ations are prefixed with distinct prefixes depending on wether the operation
is a data or a security operation. The permission sets are saved per object
and user by generating a key based on the object key and the user identifier.
This approach guarantees complete isolation between policy and data state
and avoids accidental or malicious modification of the permission sets.

Interface Modifications To allow easy replacement of the standard client
library with ACGreGate, we kept the interface as close as possible to the
original client interface. Only minor modifications with respect to the trans-

11

action interface are needed in order to specify the currently acting user.
When starting a new transaction, the identifier representing the current user
has to be passed as a parameter. All operations executed in this transac-
tion are executed under the name of this user. All other modifications are
done by returning subtypes of the original client library types such that
ACGreGate can act as a substitute to the original client library. The type
AntidoteClient needs to be substituted by SecureAntidoteClient, the type Bucket
needs to replaced with SecuredBucket.

Data Access In practice, access control policies may depend on the data
state of the application. A concrete example of an access control policy that
needs this feature is self-registration for an exercise in a lecture management
system. Students are allowed to register themselves for an exercise while the
exercise registration is open. The flag that signals that the registration is
currently open is usually part of the data state of the application, yet it has
influence on the access control decision. In this case, the decision procedure
implementation will access the object value of the exercise layer and check
the status flag for the exercise registration.

This feature enables additional and powerful policies which enable to
provide also ownership and attribute-based access control. To implement an
ownership model of objects in the database, one could associate a register-
type attribute with each object that holds the current owner of the object.
The decision procedure can access this attribute and decide on the concrete
permissions.

ACGreGate supports policies involving data state by giving the decision
procedure access to the current value of a layer object. However, policies
involving data state are not covered by our theoretical model in [19] and as
such, there is no guarantee that enforcing these policies avoids data leakage
in all cases. Instead, the safety of the policy with respect to data leakage
has to be reasoned about on a per-application and policy level.

4 Case Study

We show the applicability of ACGreGate to practical access control policies
by implementing the access control layer of a student achievement tracking
system (STATS). In the following, we describe the data structure and the
access control policy of STATS.

4.1 Data Model

The purpose of STATS is to manage the grading of exercises associated to
lectures together with the corresponding exams. A student can register an
account which includes personal data such as the name, the student iden-
tification number, and an email address. At the begin of each semester,

12

students can register for participation in an exercise. The status of the ex-
ercise registration is indicated by a flag in the exercise object. The students
registered for an exercise are organized into groups for which a time slot on a
specific day is allocated on which a class is given in a specified location. One
or more assistants are responsible for the exercise organization. The exercise
classes are given by tutors which are responsible for several exercise groups.
Students can obtain points for homework submissions which are persisted in
form of a map from sheet id to the achieved points.

Similarly, students can register and participate in exams. An exam can
be an open exam, for example a trial exam, which is indicated by a flag, or
it is only open for students who participated successfully in the exercises. In
the end, the exam results together with the grade assignment are published
which is indicated again by a flag in the corresponding exam object.

4.2 Access Control Policy

The STAT System was developed in the context of maintaining the integrity
of structured data [17]. The access control policy of the STAT System was
formulated in terms of integrity constraints. Therefore, only updates were
originally restricted.

The access control policies for the update operations are defined as fol-
lows. Admins are allowed to perform all updates. Assistants of an exercise
are allowed to modify the attributes of the exercise as well as open and close
the exercise registration. They are also allowed to create and update groups
and sheets of the exercise as well as delete them. Additionally, assistants
are allowed to assign students to groups and take them out again as well
as to assign and remove tutors. Tutors are allowed to assign students of
their group to teams and to modify the results of students in their group.
Examiners can modify the attributes of the exam and can add and remove
participants. They can create, modify and delete tasks and grades and assign
results to participants. Examiners can also open the exam for registration
for students and publish the results of the exam for the participants. Stu-
dents can always register for an exercise, but they can only sign-up for or
sign-out of a group if the exercise registration is open. Students can also
register for and unregister from exams that are open to self-registration. We
now added further the access control rule that assistants and tutors can see
the results of their groups and that examiners can only see the results of
their own exams. Students have only access to their personal results of the
exercises and exams.

These policy rules are based on the application functions. To be imple-
mented as a decision procedure in ACGreGate, they have to be translated to
rules on the data update level. For example, an update of an exercise object
is allowed if the user is an admin, an assistant of this exercise or a student
such that the exercise adds the student id to the set of registered students

13

for the exercise. We did this for all rules stated above and implemented a
decision procedure according to these rules. The result is a Java method
with less then 250 lines of Java including error handling and logging. Even
though the rules include dependencies to data values, the system is secure
in the sense that it avoids data leakage:

• The exercise and exam registration flags control, whether students can
register themselves; these flags do not expose additional data.

• Setting the publish flag in the exam exposes the exam results to the
students. Assigning this flag to different values concurrently might
expose the exam results without consensus. However, we argue that
this situation does not arise in practice. Typically, a single examiner
sets the flag on behalf of all examiners once they decided to publish
the results.

5 Evaluation and Results

The STAT System has been in active use in the CS department at the Uni-
versity of Kaiserslautern in Germany since 2011, though the current imple-
mentation is based on a different data persistence layer. We captured the
data state of roughly two years with four exercise iterations and six exams.
A workload generator takes this data and recreates the same data state
in the Antidote backend of STATS. Since the application performs consis-
tency checks, this workload triggers 102 861 datastore read operations and
32 991 datastore update operations. The execution of the decision procedure
triggers additional read operations for retrieving the current policy and ad-
ditional data for some rules. This yields additional 216 923 read operations,
which is an overhead of about 135% over the actual operation. The tests
we report on here were performed on a server with two Intel Xeon E5-2620
CPUs and 64GB of RAM running Ubuntu 16.04.1 LTS. We used Docker to
build images of the Antidote database and the STAT System. The Docker
version used was 1.12.6.

We performed two types of tests. In the first setup, we started one con-
tainer with the STAT System with the access control layer implemented
using ACGreGate. This container was connected to a container running An-
tidote using a Docker virtual network. The second setup used a modified
version of the STAT System that forwarded the access control decisions to an
access control server implementing the STATS policy running as a separate
container. The STATS container was connected to the Antidote container
using one virtual network and connected to the access control server using
another separate virtual network. On this network, we used the netem net-
work emulator to simulate different latencies between the application and
the access control server.

14

Table 1: Performance results.
net delay request delay throughput duration

ACGreGate - - 1 079.2 ops/s 2:06
nodelay 0ms 0.3ms 1 257.9 ops/s 1:48
small 10ms 13.9ms 75.9 ops/s 29:51
medium 50ms 69.0ms 16.3 ops/s 2:19:11
large 100ms 136.8ms 8.3 ops/s 4:34:21

0.00	

200.00	

400.00	

600.00	

800.00	

1000.00	

1200.00	

1400.00	

0	 20	 40	 60	 80	 100	 120	

ACGreGate	(ops/s)	

request	delay	(ms)	

throughput	(ops/s)	

Figure 4: Performance comparison for different network delays.

The results of these experiments are given in Table 1. The net delay refers
to the emulated delay of the network between the application and the access
control server. The throughput is calculated for the operations issued by the
application excluding the operations produced by the decision procedure.
The throughput in the ACGreGate and nodelay tests are bounded only by
the performance of a single Antidote node. When adding network delay, this
delay dominates the performance. Even with only 10ms roundtrip delay,
the performance drops from almost 1 300 operations per second to about 76
operations per second. This delay is roughly observed for servers in different
nearby cities in the same country. For more than 50ms of roundtrip delay
on the network, the performance drops by two orders of magnitude to about
16 operations per second, which makes using a central access control server
infeasible for cross-country or even geo-scale replication.

The graph in Figure 4 shows a comparison between the performance on
ACGreGate and the performance of using a central access control server.
ACGreGate has direct access to the policy and gets an immediate response
for reading the permissions from the local state in the Antidote datastore.
This makes the performance independent of the network delay. In contrast,

15

the centralized architecture is very sensitive to network delay. For a net-
work delay of 0ms, the centralized architecture performs slightly better then
ACGreGate in our test. The reason for this is that we used a very fast
in-memory data store to implement the access control server whereas AC-
GreGate reads the policies from Antidote. Using a persistent database, for
example Antidote, to implement the access control server would yield a result
equivalent to the performance of ACGreGate for the 0 ms delay case.

When running the workload generator without access control checks en-
abled, the throughput is at roughly 1750 ops/s and the program runs in 1:17
minutes, which shows a slowdown for ACGreGate of about 40%. This slow-
down is not unexpected and depends on the number of requests for additional
information required by the decision procedure. The performance could fur-
ther be improved by co-locating data and security attributes or caching of
access control decisions.

There are access control architectures that influence the performance far
less but also offer less security guarantees. A role-based access control system
can be setup with a central authentication server that also manages the roles
of users. When authenticating to the server, the user opens a session for
which the roles of the user are active that were valid when performing the
authentication. This setup can make access control decisions locally without
contacting the server again and without reading additional data from the
store. But modifications of user permissions do not become effective together
with the data modifications, but only after the next authentication request
of the user. In addition, role-based access control is far more restrictive with
respect to the security policies than the model used by ACGreGate.

6 Related Work

Access Control for Applications using Weakly Consistent Data
Stores The topic of access control for applications using weakly consistent
data stores has received surprisingly little attention. The original version of
Amazon Dynamo [13] did not offer authentication and authorization capabil-
ities. Several other related eventually consistent data stores offer meanwhile
techniques to implement access control, but the granularity is not fine enough
to provide access control on the application level. Riak KV [6], MongoDB
[3], Couchbase [2] and Cassandra [1] all support the management of users,
roles and permissions. But the smallest granularity is on the level of buck-
ets or collections, comparable with tables in relational data bases. Typical
permissions on this level allow to read, write, modify, or delete any value
of the bucket or collection. A more fine-grained permission level relating to
the operations on the application level is not supported. MongoDB Stich
[4] is a framework for applications built on MongoDB that provides support
for access control. The policies supported are mainly based on the current

16

data state and correctness of the access control system is not clear for any
definition of access control.

Samarati et. al[18] describe a high-level approach to authorization in
eventually consistent systems. The general idea is to optimistically accept
all operations and compensate the operations which were executed despite
the security policy by performing rollbacks. While this approach guarantees
convergence of the security policy, it is not clear for each operation how to
undo the effect of this operation after it has been executed. One of the
problems is the potential binding between operations and effects in the data
store and changes of the real world. For example, a banking system allows
to withdraw money from an account and the ATM outputs the money. In
this case, it is hard to undo the withdrawal because the person with the
money has already walked away. In addition, the guarantees given by such
an optimistic system remain unclear. Effects of operations can be perceived
by a user of the data store before the rollback, thereby possibly leaking
sensible information.

Wobber et. al[21] present an access control model for weakly consistent,
mutually distrustful replicated systems. Their focus of work is on partial
replication with different access policies per replica. While we consider a
different setting of fully replicated systems, similar problems can be iden-
tified. The causality between a policy and the subsequent operation that
are permitted by the policy is captured in their model by waiting for the
required policy change to arrive. However, the causality between a policy
change that restricts the visibility of the effect of an operation and the sub-
sequent execution of this operation is not captured. As such, the model still
allows leaking sensitive information because of the possible violation of the
protection relation between a policy change and a subsequent data operation.

Access Control for Distributed Applications In the area of access
control for distributed applications, most of the work applies to strongly
consistent systems. Bui et. al[10] developed an algorithm named FACADE
for fast evaluation of stateful attribute-based access control policies. The
policies supported by the algorithm are more expressive than the policies
we consider. In their work, access control decisions can be influenced by
prior access control decisions which requires a linear order of operations and
additional state to coordinate the distributed access control decisions. The
performance impact of the evaluation is too large for the high-performance
applications we consider, the author give an average latency of about 37ms
for their algorithm. In addition to that, the coordination needed to support
stateful access control policies reduces the availability of the application as
described in Section 2.

17

6.1 Conclusion

Providing correct, low-latency access control is a challenge for developers
of highly available and scalable systems. A careful analysis of the intricate
interplay of data and policies shows that such an access control system can
be based on causally consistent data stores with support for highly available
transactions and conflict resolution of concurrent updates. To show the
feasibility of such a system, we implemented ACGreGate, a Java framework
for applications based on the Antidote data store. Our case study shows that
ACGreGate allows to implement non-trivial policies encountered in systems
in active use today. As the use case shows, using ACGreGate to implement
access control in an application limits the scalability and performance only
to the scalability and performance of the datastore.

References

[1] Apache Cassandra, August 2017. URL: http://cassandra.apache.
org/.

[2] Couchbase, August 2017. URL: http://www.couchbase.com/.

[3] MongoDB for GIANT Ideas – MongoDB, August 2017. URL: https:
//www.mongodb.org/.

[4] MongoDB Stitch – Backend as a Service, August 2017. URL: https:
//www.mongodb.com/cloud/stitch.

[5] Owasp - the free and open software security community, August 2017.
URL: https://www.owasp.org/.

[6] Riak KV, August 2017. URL: http://basho.com/products/riak-kv/.

[7] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa,
N. Preguiça, and M. Shapiro. Cure: Strong semantics meets high avail-
ability and low latency. In 2016 IEEE 36th International Conference on
Distributed Computing Systems (ICDCS), pages 405–414, June 2016.

[8] Sérgio Almeida, João Leitão, and Luís Rodrigues. ChainReaction: A
Causal+ Consistent Datastore Based on Chain Replication. In Pro-
ceedings of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 85–98, New York, NY, USA, 2013. ACM.

[9] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M.
Hellerstein, and Ion Stoica. Highly Available Transactions: Virtues and
Limitations. 7(3):181–192.

18

[10] Thang Bui, Scott D. Stoller, and Shikhar Sharma. Fast Distributed
Evaluation of Stateful Attribute-Based Access Control Policies. In Data
and Applications Security and Privacy XXXI, Lecture Notes in Com-
puter Science, pages 101–119. Springer, Cham.

[11] Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sa-
giv. Eventually Consistent Transactions. In Programming Languages
and Systems - 21st European Symposium on Programming, ESOP 2012,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings, pages 67–86.

[12] SyncFree Consortium. Antidote reference platform, August 2017. URL:
https://github.com/SyncFree/antidote.

[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07, pages 205–220,
New York, NY, USA, 2007. ACM.

[14] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel.
Orbe: Scalable causal consistency using dependency matrices and phys-
ical clocks. In Proceedings of the 4th Annual Symposium on Cloud Com-
puting, SOCC ’13, pages 11:1–11:14, New York, NY, USA, 2013. ACM.

[15] Jiaqing Du, Călin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel.
Gentlerain: Cheap and scalable causal consistency with physical clocks.
In Proceedings of the ACM Symposium on Cloud Computing, SOCC ’14,
pages 4:1–4:13, New York, NY, USA, 2014. ACM.

[16] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G.
Andersen. Don’t settle for eventual: Scalable causal consistency for
wide-area storage with cops. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11, pages 401–416,
New York, NY, USA, 2011. ACM.

[17] Patrick Michel. A formal framework for maintaining the integrity of
structured data. Dr. Hut, 2014.

[18] Pierangela Samarati, Paul Ammann, and Sushil Jajodia. Maintain-
ing replicated authorizations in distributed database systems. Data &
Knowledge Engineering, 18(1):55 – 84, 1996.

[19] Mathias Weber, Annette Bieniusa, and Arnd Poetzsch-Heffter. Access
Control for Weakly Consistent Replicated Information Systems, pages
82–97. Springer International Publishing, Cham, 2016.

19

[20] Mathias Weber, Annette Bieniusa, and Arnd Poetzsch-Heffter. EPTL -
A Temporal Logic for Weakly Consistent Systems (Short Paper), pages
236–242. Springer International Publishing, Cham, 2017.

[21] Ted Wobber, Thomas L. Rodeheffer, and Douglas B. Terry. Policy-
based access control for weakly consistent replication. In Proceedings of
the 5th European Conference on Computer Systems, EuroSys ’10, pages
293–306, New York, NY, USA, 2010. ACM.

20

Non-uniform Replication
Gonçalo Cabrita1 and Nuno Preguiça2

1 NOVA LINCS & DI, FCT, Universidade NOVA de Lisboa, Caparica, Portugal
g.cabrita@campus.fct.unl.pt

2 NOVA LINCS & DI, FCT, Universidade NOVA de Lisboa, Caparica, Portugal
nuno.preguica@fct.unl.pt

Abstract
Replication is a key technique in the design of efficient and reliable distributed systems. As
information grows, it becomes difficult or even impossible to store all information at every replica.
A common approach to deal with this problem is to rely on partial replication, where each replica
maintains only a part of the total system information. As a consequence, a remote replica might
need to be contacted for computing the reply to some given query, which leads to high latency
costs particularly in geo-replicated settings. In this work, we introduce the concept of non-
uniform replication, where each replica stores only part of the information, but where all replicas
store enough information to answer every query. We apply this concept to eventual consistency
and conflict-free replicated data types. We show that this model can address useful problems
and present two data types that solve such problems. Our evaluation shows that non-uniform
replication is more efficient than traditional replication, using less storage space and network
bandwidth.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Non-uniform Replication; Partial Replication; Replicated Data Types;
Eventual Consistency

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2017.0

1 Introduction

Many applications run on cloud infrastructures composed by multiple data centers, geo-
graphically distributed across the world. These applications usually store their data on
geo-replicated data stores, with replicas of data being maintained in multiple data centers.
Data management in geo-replicated settings is challenging, requiring designers to make a
number of choices to better address the requirements of applications.

One well-known trade-off is between availability and data consistency. Some data stores
provide strong consistency [5, 17], where the system gives the illusion that a single replica
exists. This requires replicas to coordinate for executing operations, with impact on the
latency and availability of these systems. Other data stores [7, 11] provide high-availability
and low latency by allowing operations to execute locally in a single data center eschewing a
linearizable consistency model. These systems receive and execute updates in a single replica
before asynchronously propagating the updates to other replicas, thus providing very low
latency.

With the increase of the number of data centers available to applications and the amount
of information maintained by applications, another trade-off is between the simplicity of
maintaining all data in all data centers and the cost of doing so. Besides sharding data
among multiple machines in each data center, it is often interesting to keep only part of
the data in each data center to reduce the costs associated with data storage and running

© Gonçalo Cabrita and Nuno Preguiça;
licensed under Creative Commons License CC-BY

21st International Conference on Principles of Distributed Systems (OPODIS 2017).
Editors: James Aspnes, Alysson Bessani, Pascal Felber, and João Leitão; Article No. 0; pp. 0:1–0:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

0:2 Non-uniform Replication

protocols that involve a large number of replicas. In systems that adopt a partial replication
model [22, 25, 6], as each replica only maintains part of the data, it can only locally process
a subset of the database queries. Thus, when executing a query in a data center, it might be
necessary to contact one or more remote data centers for computing the result of the query.

In this paper we explore an alternative partial replication model, the non-uniform
replication model, where each replica maintains only part of the data but can process all
queries. The key insight is that for some data objects, not all data is necessary for providing
the result of read operations. For example, an object that keeps the top-K elements only
needs to maintain those top-K elements in every replica. However, the remaining elements
are necessary if a remove operation is available, as one of the elements not in the top needs
to be promoted when a top element is removed.

A top-K object could be used for maintaining the leaderboard in an online game. In
such system, while the information for each user only needs to be kept in the data center
closest to the user (and in one or two more for fault tolerance), it is important to keep a
replica of the leaderboard in every data center for low latency and availability. Currently,
for supporting such a feature, several designs could be adopted. First, the system could
maintain an object with the results of all players in all replicas. While simple, this approach
turns out to be needlessly expensive in both storage space and network bandwidth when
compared to our proposed model. Second, the system could move all data to a single data
center and execute the computation in that data center or use a data processing system that
can execute computations over geo-partitioned data [10]. The result would then have to be
sent to all data centers. This approach is much more complex than our proposal, and while
it might be interesting when complex machine learning computations are executed, it seems
to be an overkill in a number of situations.

We apply the non-uniform replication model to eventual consistency and Conflict-free
Replicated Data Types [23], formalizing the model for an operation-based replication approach.
We present two useful data type designs that implement such model. Our evaluation shows
that the non-uniform replication model leads to high gains in both storage space and network
bandwidth used for synchronization when compared with state-of-the-art replication based
alternatives.

In summary, this paper makes the following contributions:

The proposal of the non-uniform replication model, where each replica only keeps part of
the data but enough data to reply to every query;
The definition of non-uniform eventual consistency (NuEC), the identification of sufficient
conditions for providing NuEC and a protocol that enforces such conditions relying on
operation-based synchronization;
Two useful replicated data type designs that adopt the non-uniform replication model
(and can be generalized to use different filter functions);
An evaluation of the proposed model, showing its gains in term of storage space and
network bandwidth.

The remainder of this paper is organized as follows. Section 2 discusses the related work.
Section 3 describes the non-uniform replication model. Section 4 applies the model to an
eventual consistent system. Section 5 introduces two useful data type designs that follow the
model. Section 6 compares our proposed data types against state-of-the-art CRDTs.

G. Cabrita and N. Preguiça 0:3

2 Related Work

Replication: A large number of replication protocols have been proposed in the last
decades [8, 27, 15, 16, 2, 21, 17]. Regarding the contents of the replicas, these protocols can
be divided in those providing full replication, where each replica maintains the full database
state, and partial replication, where each replica maintains only a subset of the database
state.

Full replication strategies allow operations to concurrently modify all replicas of a system
and, assuming that replicas are mutually consistent, improves availability since clients may
query any replica in the system and obtain an immediate response. While this improves the
performance of read operations, update operations now negatively affect the performance
of the system since they must modify every replica which severely affects middle-scale to
large-scale systems in geo-distributed settings. This model also has the disadvantage of
limiting the system’s total capacity to the capacity of the node with fewest resources.

Partial replication [3, 22, 25, 6] addresses the shortcomings of full replication by having
each replica store only part of the data (which continues being replicated in more than one
node). This improves the scalability of the system but since each replica maintains only a
part of the data, it can only locally process a subset of queries. This adds complexity to the
query processing, with some queries requiring contacting multiple replicas to compute their
result. In our work we address these limitations by proposing a model where each replica
maintains only part of the data but can reply to any query.

Despite of adopting full or partial replication, replication protocols enforce strong consis-
tency [17, 5, 18], weak consistency [27, 7, 15, 16, 2] or a mix of these consistency models [24, 14].
In this paper we show how to combine non-uniform replication with eventual consistency.
An important aspect in systems that adopt eventual consistency is how the system handles
concurrent operations. CRDTs have been proposed as a technique for addressing such
challenge.

CRDTs: Conflict-free Replicated Data Types [23] are data types designed to be replicated
at multiple replicas without requiring coordination for executing operations. CRDTs encode
merge policies used to guarantee that all replicas converge to the same value after all updates
are propagated to every replica. This allows an operation to execute immediately on any
replica, with replicas synchronizing asynchronously. Thus, a system that uses CRDTs can
provide low latency and high availability, despite faults and network latency. With these
guarantees, CRDTs are a key building block for providing eventual consistency with well
defined semantics, making it easier for programmers to reason about the system evolution.

When considering the synchronization process, two main types of CRDTs have been
proposed: state-based CRDT, where replicas synchronize pairwise, by periodically exchanging
the state of the replicas; and operation-based CRDTs, where all operations need to be
propagated to all replicas.

Delta-based CRDTs [1] improve upon state-based CRDTs by reducing the dissemination
cost of updates, sending only a delta of the modified state. This is achieved by using delta-
mutators, which are functions that encode a delta of the state. Linde et. al [26] propose an
improvement to delta-based CRDTs that further reduce the data that need to be propagated
when a replica first synchronizes with some other replica. This is particularly interesting in
peer-to-peer settings, where the synchronization partners of each replica change frequently.
Although delta-based CRDTs reduce the network bandwidth used for synchronization, they
continue to maintain a full replication strategy where the state of quiescent replicas is
equivalent.

OPODIS 2017

0:4 Non-uniform Replication

Computational CRDTs [19] are an extension of state-based CRDTs where the state of the
object is the result of a computation (e.g. the average, the top-K elements) over the executed
updates. As with the model we propose in this paper, replicas do not need to have equivalent
states. The work we present in this paper extends the initial ideas proposed in computational
CRDTs in several aspects, including the definition of the non-uniform replication model, its
application to operation-based eventual consistency and the new data type designs.

3 Non-uniform replication

We consider an asynchronous distributed system composed by n nodes. Without loss of
generality, we assume that the system replicates a single object. The object has an interface
composed by a set of read-only operations, Q, and a set of update operations, U . Let S be
the set of all possible object states, the state that results from executing operation o in state
s ∈ S is denoted as s • o. For a read-only operation, q ∈ Q, s • q = s. The result of operation
o ∈ Q ∪ U in state s ∈ S is denoted as o(s) (we assume that an update operation, besides
modifying the state, can also return some result).

We denote the state of the replicated system as a tuple (s1, s2, . . . , sn), with si the state
of the replica i. The state of the replicas is synchronized by a replication protocol that
exchanges messages among the nodes of the system and updates the state of the replicas.
For now, we do not consider any specific replication protocol or strategy, as our proposal can
be applied to different replication strategies.

We say a system is in a quiescent state for a given set of executed operations if the
replication protocol has propagated all messages necessary to synchronize all replicas, i.e.,
additional messages sent by the replication protocol will not modify the state of the replicas.
In general, replication protocols try to achieve a convergence property, in which the state of
any two replicas is equivalent in a quiescent state.

I Definition 1 (Equivalent state). Two states, si and sj , are equivalent, si ≡ sj , iff the results
of the execution of any sequence of operations in both states are equal, i.e., ∀o1, . . . , on ∈
Q ∪ U , on(si • o1 • . . . • on−1) = on(sj • o1 • . . . • on−1).

This property is enforced by most replication protocols, independently of whether they
provide strong or weak consistency [13, 15, 27]. We note that this property does not require
that the internal state of the replicas is the same, but only that the replicas always return
the same results for any executed sequence of operations.

In this work, we propose to relax this property by requiring only that the execution of
read-only operations return the same value. We name this property as observable equivalence
and define it formally as follows.

I Definition 2 (Observable equivalent state). Two states, si and sj , are observable equivalent,
si

o≡ sj , iff the result of executing every read-only operation in both states is equal, i.e.,
∀o ∈ Q, o(si) = o(sj).

As read-only operations do not affect the state of a replica, the results of the execution
of any sequence of read-only operations in two observable equivalent states will also be the
same. We now define a non-uniform replication system as one that guarantees only that
replicas converge to an observable equivalent state.

I Definition 3 (Non-uniform replicated system). We say that a replicated system is non-
uniform if the replication protocol guarantees that in a quiescent state, the state of any
two replicas is observable equivalent, i.e., in the quiescent state (s1, . . . , sn), we have si

o≡
sj ,∀si, sj ∈ {s1, . . . , sn}.

G. Cabrita and N. Preguiça 0:5

3.1 Example
We now give an example that shows the benefit of non-uniform replication. Consider an
object top-1 with three operations: (i) add(name, value), an update operation that adds
the pair to the top; (ii) rmv(name), an update operation that removes all previously added
pairs for name; (iii) get(), a query that returns the pair with the largest value (when more
than one pair has the same largest value, the one with the smallest lexicographic name is
returned).

Consider that add(a, 100) is executed in a replica and replicated to all replicas. Later
add(b, 110) is executed and replicated. At this moment, all replicas know both pairs.

If later add(c, 105) executes in some replica, the replication protocol does not need to
propagate the update to the other replicas in a non-uniform replicated system. In this case,
all replicas are observable equivalent, as a query executed at any replica returns the same
correct value. This can have an important impact not only in the size of object replicas, as
each replica will store only part of the data, but also in the bandwidth used by the replication
protocol, as not all updates need to be propagated to all replicas.

We note that the states that result from the previous execution are not equivalent because
after executing rmv(b), the get operation will return (c, 105) in the replica that has received
the add(c, 105) we operation and (b, 100) in the other replicas.

Our definition only forces the states to be observable equivalent after the replication
protocol becomes quiescent. Different protocols can be devised giving different guarantees.
For example, for providing linearizability, the protocol should guarantee that all replicas
return (c, 105) after the remove. This can be achieved, for example, by replicating the now
relevant (c, 105) update in the process of executing the remove.

In the remainder of this paper, we study how to apply the concept of non-uniform
replication in the context of eventually consistent systems. The study of its application to
systems that provide strong consistency is left for future work.

4 Non-uniform eventual consistency

We now apply the concept of non-uniform replication to replicated systems providing eventual
consistency.

4.1 System model
We consider an asynchronous distributed system composed by n nodes, where nodes may
exhibit fail-stop faults but not byzantine faults. We assume a communication system with a
single communication primitive, mcast(m), that can be used by a process to send a message
to every other process in the system with reliable broadcast semantics. A message sent by a
correct process is eventually received by all correct processes. A message sent by a faulty
process is either received by all correct processes or none. Several communication systems
provide such properties – e.g. systems that propagate messages reliably using anti-entropy
protocols [8, 9].

An object is defined as a tuple (S, s0,Q,Up,Ue), where S is the set of valid states of
the object, s0 ∈ S is the initial state of the object, Q is the set of read-only operations
(or queries), Up is the set of prepare-update operations and Ue is the set of effect-update
operations.

A query executes only at the replica where the operation is invoked, its source, and it has
no side-effects, i.e., the state of an object remains unchanged after executing the operation.

OPODIS 2017

0:6 Non-uniform Replication

When an application wants to update the state of the object, it issues a prepare-update
operation, up ∈ Up. A up operation executes only at the source, has no side-effects and
generates an effect-update operation, ue ∈ Ue. At source, ue executes immediately after up.

As only effect-update operations may change the state of the object, for reasoning about
the evolution of replicas we can restrict our analysis to these operations. To be precise, the
execution of a prepare-update operation generates an instance of an effect-update operation.
For simplicity, we refer the instances of operations simply as operations. With Oi the set of
operations generated at node i, the set of operations generated in an execution, or simply
the set of operations in an execution, is O = O1 ∪ . . . ∪On.

4.2 Non-uniform eventual consistency
For any given execution, with O the operations of the execution, we say a replicated system
provides eventual consistency iff in a quiescent state: (i) every replica executed all operations
of O; and (ii) the state of any pair of replicas is equivalent.

A sufficient condition for achieving the first property is to propagate all generated
operations using reliable broadcast (and execute any received operation). A sufficient
condition for achieving the second property is to have only commutative operations. Thus, if
all operations commute with each other, the execution of any serialization of O in the initial
state of the object leads to an equivalent state.

From now on, unless stated otherwise, we assume that all operations commute. In this
case, as all serializations of O are equivalent, we denote the execution of a serialization of O
in state s simply as s •O.

For any given execution, with O the operations of the execution, we say a replicated
system provides non-uniform eventual consistency iff in a quiescent state the state of any
replica is observable equivalent to the state obtained by executing some serialization of O.
As a consequence, the state of any pair of replicas is also observable equivalent.

For a given set of operations in an execution O, we say that Ocore ⊆ O is a set of core
operations of O iff s0 •O o≡ s0 •Ocore. We define the set of operations that are irrelevant to
the final state of the replicas as follows: Omasked ⊆ O is a set of masked operations of O iff
s0 •O o≡ s0 • (O \Omasked).
I Theorem 4 (Sufficient conditions for NuEC). A replication system provides non-uniform
eventual consistency (NuEC) if, for a given set of operations O, the following conditions
hold: (i) every replica executes a set of core operations of O; and (ii) all operations commute.
Proof. From the definition of core operations of O, and by the fact that all operations
commute, it follows immediately that if a replica executes a set of core operations, then
the final state of the replica is observable equivalent to the state obtained by executing a
serialization of O. Additionally, any replica reaches an observable equivalent state. J

4.3 Protocol for non-uniform eventual consistency
We now build on the sufficient conditions for providing non-uniform eventual consistency
to devise a correct replication protocol that tries to minimize the operations propagated to
other replicas. The key idea is to avoid propagating operations that are part of a masked set.
The challenge is to achieve this by using only local information, which includes only a subset
of the executed operations.

Algorithm 1 presents the pseudo-code of an algorithm for achieving non-uniform eventual
consistency – the algorithm does not address the durability of operations, which will be
discussed later.

G. Cabrita and N. Preguiça 0:7

Algorithm 1 Replication algorithm for non-uniform eventual consistency
1: S : state: initial s0 . Object state
2: logrecv : set of operations: initial {}
3: loglocal : set of operations: initial {} . Local operations not propagated
4:
5: execOp(op): void . New operation generated locally
6: loglocal = loglocal ∪ {op}
7: S = S • op
8:
9: opsToPropagate(): set of operations . Computes the local operations that need to be propagated

10: ops = maskedF orever(loglocal, S, logrecv)
11: loglocal = loglocal \ ops
12: opsImpact = hasObservableImpact(loglocal, S, logrecv)
13: opsP otImpact = mayHaveObservableImpact(loglocal, S, logrecv)
14: return opsImpact ∪ opsP otImpact
15:
16: sync(): void . Propagates local operations to remote replicas
17: ops = opsT oP ropagate()
18: compactedOps = compact(ops) . Compacts the set of operations
19: mcast(compactedOps)
20: logcoreLocal = {}
21: loglocal = loglocal \ ops
22: logrecv = logrecv ∪ ops
23:
24: on receive(ops): void . Process remote operations
25: logrecv = logrecv ∪ ops
26: S = S • ops

The algorithm maintains the state of the object and two sets of operations: loglocal, the
set of effect-update operations generated in the local replica and not yet propagated to other
replicas; logrecv, the set of effect-update operations propagated to all replicas (including
operations generated locally and remotely).

When an effect-update operation is generated, the execOp function is called. This function
adds the new operation to the log of local operations and updates the local object state.

The function sync is called to propagate local operations to remote replicas. It starts
by computing which new operations need to be propagated, compacts the resulting set of
operations for efficiency purposes, multicasts the compacted set of operations, and finally
updates the local sets of operations. When a replica receives a set of operations (line 24), the
set of operations propagated to all nodes and the local object state are updated accordingly.

Function opsToPropagate addresses the key challenge of deciding which operations need
to be propagated to other replicas. To this end, we divide the operations in four groups.

First, the forever masked operations, which are operations that will remain in the set
of masked operations independently of the operations that might be executed in the future.
In the top example, an operation that adds a pair masks forever all known operations that
added a pair for the same element with a lower value. These operations are removed from
the set of local operations.

Second, the core operations (opsImpact, line 12), as computed locally. These operations
need to be propagated, as they will (typically) impact the observable state at every replica.

Third, the operations that might impact the observable state when considered in com-
bination with other non-core operations that might have been executed in other replicas
(opsPotImpact, line 13). As there is no way to know which non-core operations have been
executed in other replicas, it is necessary to propagate these operations also. For example,
consider a modified top object where the value associated with each element is the sum of
the values of the pairs added to the object. In this case, an add operation that would not
move an element to the top in a replica would be in this category because it could influence

OPODIS 2017

0:8 Non-uniform Replication

the top when combined with other concurrent adds for the same element.
Fourth, the remaining operations that might impact the observable state in the future,

depending on the evolution of the observable state. These operations remain in loglocal.
In the original top example, an operation that adds a pair that will not be in the top, as
computed locally, is in this category as it might become the top element after removing the
elements with larger values.

For proving that the algorithm can be used to provide non-uniform eventual consistency,
we need to prove the following property.
I Theorem 5. Algorithm 1 guarantees that in a quiescent state, considering all operations
O in an execution, all replicas have received all operations in a core set Ocore.
Proof. To prove this property, we need to prove that there exists no operation that has not
been propagated by some replica and that is required for any Ocore set. Operations in the first
category have been identified as masked operations independently of any other operations
that might have been or will be executed. Thus, by definition of masked operations, a Ocore

set will not (need to) include these operations. The fourth category includes operations that
do not influence the observable state when considering all executed operations – if they might
have impact, they would be in the third category. Thus, these operations do not need to be
in a Ocore set. All other operations are propagated to all replicas. Thus, in a quiescent state,
every replica has received all operations that impact the observable state. J

4.4 Fault-tolerance
Non-uniform replication aims at reducing the cost of communication and the size of replicas,
by avoiding propagating operations that do not influence the observable state of the object.
This raises the question of the durability of operations that are not immediately propagated
to all replicas.

One way to solve this problem is to have the source replica propagating every local
operation to f more replicas to tolerate f faults. This ensures that an operation survives
even in the case of f faults. We note that it would be necessary to adapt the proposed
algorithm, so that in the case a replica receives an operation for durability reasons, it would
propagate the operation to other replicas if the source replica fails. This can be achieved
by considering it as any local operation (and introducing a mechanism to filter duplicate
reception of operations).

4.5 Causal consistency
Causal consistency is a popular consistency model for replicated systems [15, 2, 16], in which
a replica only executes an operation after executing all operations that causally precede it [12].
In the non-uniform replication model, it is impossible to strictly adhere to this definition
because some operations are not propagated (immediately), which would prevent all later
operations from executing.

An alternative would be to restrict the dependencies to the execution of core operations.
The problem with this is that the status of an operation may change by the execution of
another operation. When a non-core operation becomes core, a number of dependencies that
should have been enforced might have been missed in some replicas.

We argue that the main interest of causal consistency, when compared with eventual
consistency, lies in the semantics provided by the object. Thus, in the designs that we present
in the next section, we aim to guarantee that in a quiescent state, the state of the replicated
objects provide equivalent semantics to that of a system that enforces causal consistency.

G. Cabrita and N. Preguiça 0:9

5 Non-uniform operation-based CRDTs

CRDTs [23] are data-types that can be replicated, modified concurrently without coordination
and guarantee the eventual consistency of replicas given that all updates propagate to all
replicas. We now present the design of two useful operation-based CRDTs [23] that adopt
the non-uniform replication model. Unlike most operation-based CRDT designs, we do not
assume that the system propagates operations in a causal order. These designs were inspired
by the state-based computational CRDTs proposed by Navalho et al. [19], which also allow
replicas to diverge in their quiescent state.

5.1 Top-K with removals NuCRDT
In this section we present the design of a non-uniform top-K CRDT, as the one introduced
in section 3.1. The data type allows access to the top-K elements added and can be used,
for example, for maintaining the leaderboard in online games. The proposed design could
be adapted to define any CRDT that filters elements based on a deterministic function by
replacing the topK function used in the algorithm by another filter function.

For defining the semantics of our data type, we start by defining the happens-before
relation among operations. To this end, we start by considering the happens-before relation
established among the events in the execution of the replicated system [12]. The events
that are considered relevant are: the generation of an operation at the source replica, and
the dispatch and reception of a message with a new operation or information that no new
message exists. We say that operation opi happens before operation opj iff the generation of
opi happened before the generation of opj in the partial order of events.

The semantics of the operations defined in the top-K CRDT is the following. The
add(el,val) operation adds a new pair to the object. The rmv(el) operation removes any pair
of el that was added by an operation that happened-before the rmv (note that this includes
non-core add operations that have not been propagated to the source replica of the remove).
This leads to an add-wins policy [23], where a remove has no impact on concurrent adds.
The get() operation returns the top-K pairs in the object, as defined by the function topK
used in the algorithm.

Algorithm 2 presents a design that implements this semantics. The prepare-update add
operation generates an effect-update add that has an additional parameter consisting in
a timestamp (replicaid, val), with val a monotonically increasing integer. The prepare-
update rmv operation generates an effect-update rmv that includes an additional parameter
consisting in a vector clock that summarizes add operations that happened before the remove
operation. To this end, the object maintains a vector clock that is updated when a new add
is generated or executed locally. Additionally, this vector clock should be updated whenever
a replica receives a message from a remote replica (to summarize also the adds known in the
sender that have not been propagated to this replica).

Besides this vector clock, vc, each object replica maintains: (i) a set, elems, with the
elements added by all add operations known locally (and that have not been removed yet);
and (ii) a map, removes, that maps each element id to a vector clock with a summary of
the add operations that happened before all removes of id (for simplifying the presentation
of the algorithm, we assume that a key absent from the map has associated a default vector
clock consisting of zeros for every replica).

The execution of an add consists in adding the element to the set of elems if the add has
not happened before a previously received remove for the same element – this can happen as
operations are not necessarily propagated in causal order. The execution of a rmv consists

OPODIS 2017

0:10 Non-uniform Replication

Algorithm 2 Top-K NuCRDT with removals
1: elems : set of 〈id, score, ts〉 : initial {}
2: removes : map id 7→ vectorClock: initial []
3: vc : vectorClock: initial []
4:
5: get() : set
6: return {〈id, score〉 : 〈id, score, ts〉 ∈ topK(elems)}
7:
8: prepare add(id, score)
9: generate add(id, score, 〈getReplicaId(), + + vc[getReplicaId()]〉)

10:
11: effect add(id, score, ts)
12: if removes[id][ts.siteId] < ts.val then
13: elems = elems ∪ {〈id, score, ts〉}
14: vc[ts.siteId] = max(vc[ts.siteId], ts.val)
15:
16: prepare rmv(id)
17: generate rmv(id,vc)
18:
19: effect rmv(id, vcrmv)
20: removes[id] = pointwiseMax(removes[id], vcrmv)
21: elems = elems \ {〈id0, score, ts〉 ∈ elem : id = id0 ∧ ts.val ≤ vcrmv[ts.siteId]}
22:
23: maskedForever(loglocal, S, logrecv): set of operations
24: adds = {add(id1, score1, ts1) ∈ loglocal :
25: (∃add(id2, score2, ts2) ∈ loglocal : id1 = id2 ∧ score1 < score2 ∧ ts1.val < ts2.val)∨
26: (∃rmv(id3, vcrmv) ∈ (logrecv ∪ loglocal) : id1 = id3 ∧ ts1.val ≤ vcrmv[ts1.siteId]}
27: rmvs = {rmv(id1, vc1) ∈ loglocal : ∃rmv(id2, vc2) ∈ (loglocal ∪ logrecv) : id1 = id2 ∧ vc1 < vc2}
28: return adds ∪ rmvs
29:
30: mayHaveObservableImpact(loglocal, S, logrecv): set of operations
31: return {} . This case never happens for this data type
32:
33: hasObservableImpact(loglocal, S, logrecv): set of operations
34: adds = {add(id1, score1, ts1) ∈ loglocal : 〈id1, score1, ts1〉 ∈ topK(S.elems)}
35: rmvs = {rmv(id1, vc1) ∈ loglocal : (∃add(id2, score2, ts2) ∈ (loglocal ∪ logrecv) :
36: 〈id2, score2, ts2〉 ∈ topK(S.elems ∪ {〈id2, score2, ts2〉}) ∧ id1 = id2 ∧ ts2.val ≤ vc1[ts2.siteId])}
37: return adds ∪ rmvs
38:
39: compact(ops): set of operations
40: return ops . This data type does not require compaction

in updating removes and deleting from elems the information for adds of the element that
happened before the remove. To verify if an add has happened before a remove, we check if
the timestamp associated with the add is reflected in the remove vector clock of the element
(lines 12 and 21). This ensures the intended semantics for the CRDT, assuming that the
functions used by the protocol are correct.

We now analyze the code of these functions.
Function maskedForever computes: the local adds that become masked by other

local adds (those for the same element with a lower value) and removes (those for the same
element that happened before the remove); the local removes that become masked by other
removes (those for the same element that have a smaller vector clock). In the latter case, it
is immediate that a remove with a smaller vector clock becomes irrelevant after executing
the one with a larger vector clock. In the former case, a local add for an element is masked
by a more recent local add for the same element but with a larger value as it is not possible
to remove only the effects of the later add without removing the effect of the older one. A
local add also becomes permanently masked by a local or remote remove that happened after
the add.

Function mayHaveObservableImpact returns the empty set, as for having impact on

G. Cabrita and N. Preguiça 0:11

any observable state, an operation also has to have impact on the local observable state by
itself.

Function hasObservableImpact computes the local operations that are relevant for
computing the top-K. An add is relevant if the added value is in the top; a remove is relevant
if it removes an add that would be otherwise in the top.

5.2 Top Sum NuCRDT

We now present the design of a non-uniform CRDT, Top Sum, that maintains the top-K
elements added to the object, where the value of each element is the sum of the values added
for the element. This data type can be used for maintaining a leaderboard in an online game
where every time a player completes some challenge it is awarded some number of points,
with the current score of the player being the sum of all points awarded. It could also be used
for maintaining a top of the best selling products in an (online) store (or the top customers,
etc).

The semantics of the operations defined in the Top Sum object is the following. The
add(id, n) update operation increments the value associated with id by n. The get() read-only
operation returns the top-K mappings, id→ value, as defined by the topK function (similar
to the Top-K NuCRDT).

This design is challenging, as it is hard to know which operations may have impact in the
observable state. For example, consider a scenario with two replicas, where the value of the
last element in the top is 100. If the known score of an element is 90, an add of 5 received in
one replica may have impact in the observable state if the other replica has also received an
add of 5 or more. One approach would be to propagate these operations, but this would lead
to propagating all operations.

To try to minimize the number of operations propagated we use the following heuristic
inspired by the demarcation protocol and escrow transactions [4, 20]. For each id that does
not belong to the top, we compute the difference between the smallest value in the top and
the value of the id computed by operations known in every replica – this is how much must
be added to the id to make it to the top: let d be this value. If the sum of local adds for the
id does not exceed d

num.replicas in any replica, the value of id when considering adds executed
in all replicas is smaller than the smallest element in the top. Thus, it is not necessary to
propagate add operations in this case, as they will not affect the top.

Algorithm 3 presents a design that implements this approach. The state of the object is a
single variable, state, that maps identifiers to their current values. The only prepare-update
operation, add, generates an effect-update add with the same parameters. The execution of
an effect-update add(id, n) simply increments the value of id by n.

Function maskedForever returns the empty set, as operations in this design can never
be forever masked.

Function mayHaveObservableImpact computes the set of add operations that can
potentially have an impact on the observable state, using the approach previously explained.

Function hasObservableImpact computes the set of add operations that have their
corresponding id present in the top-K. This guarantees that the values of the elements in the
top are kept up-to-date, reflecting all executed operations.

Function compact takes a set of add operations and compacts the add operations that
affect the same identifier into a single operation. This reduces the size of the messages sent
through the network and is similar to the optimization obtained in delta-based CRDTs [1].

OPODIS 2017

0:12 Non-uniform Replication

Algorithm 3 Top Sum NuCRDT
1: state : map id 7→ sum: initial []
2:
3: get() : map
4: return topK(state)
5:
6: prepare add(id, n)
7: generate add(id, n)
8:
9: effect add(id, n)

10: state[id] = state[id] + n
11:
12: maskedForever(loglocal, S, logrecv): set of operations
13: return {} . This case never happens for this data type
14:
15: mayHaveObservableImpact(loglocal, S, logrecv): set of operations
16: top = topK(S.state)
17: adds = {add(id, _) ∈ loglocal : s = sumval({add(i, n) ∈ loglocal : i = id})
18: ∧ s ≥ ((min(sum(top))− (S.state[id]− s)) / getNumReplicas())}
19: return adds
20:
21: hasObservableImpact(loglocal, S, logrecv): set of operations
22: top = topK(S.state)
23: adds = {add(id, _) ∈ loglocal : id ∈ ids(top)}
24: return adds
25:
26: compact(ops): set of operations
27: adds = {add(id, n) : id ∈ {i : add(i, _) ∈ ops}∧ n = sum({k : add(id1, k) ∈ ops : id1 = id})}
28: return adds

5.3 Discussion
The goal of non-uniform replication is to allow replicas to store less data and use less
bandwidth for replica synchronization. Although it is clear that non-uniform replication
cannot be useful for all data, we believe that the number of use cases is large enough for
making non-uniform replication interesting in practice. We now discuss two classes of data
types that can benefit from the adoption of non-uniform replication.

The first class is that of data types for which the result of queries include only a subset
of the data in the object. In this case two different situations may occur: (i) it is possible to
compute locally, without additional information, if some operation is relevant (and needs
to be propagated to all replicas); (ii) it is necessary to have additional information to be
able to decide if some operation is relevant. The Top-K CRDT presented in section 5.1 is an
example of the former. Another example includes a data type that returns a subset of the
elements added based on a (modifiable) user-defined filter – e.g. in a set of books, the filter
could select the books of a given genre, language, etc. The Top-Sum CRDT presented in
section 5.2 is an example of the latter. Another example includes a data type that returns
the 50th percentile (or others) for the elements added – in this case, it is only necessary to
replicate the elements in a range close to the 50th percentile and replicate statistics of the
elements smaller and larger than the range of replicated elements.

In all these examples, the effects of an operation that in a given moment do not influence
the result of the available queries may become relevant after other operations are executed –
in the Top-K with removes due to a remove of an element in the top; in the filtered set due
to a change in the filter; in the Top-Sum due to a new add that makes an element relevant;
and in the percentile due to the insertion of elements that make the 50th percentile change.
We note that if the relevance of an operation cannot change over time, the non-uniform
CRDT would be similar to an optimized CRDT that discard operations that are not relevant
before propagating them to other replicas.

G. Cabrita and N. Preguiça 0:13

A second class is that of data types with queries that return the result of an aggregation
over the data added to the object. An example of this second class is the Histogram CRDT
presented in the appendix. This data type only needs to keep a count for each element. A
possible use of this data type would be for maintaining the summary of classifications given
by users in an online shop. Similar approaches could be implemented for data types that
return the result of other aggregation functions that can be incrementally computed [19].

A data type that supports, besides adding some information, an operation for removing
that information would be more complex to implement. For example, in an Histogram CRDT
that supports removing a previously added element, it would be necessary that concurrently
removing the same element would not result in an incorrect aggregation result. Implementing
such CRDT would require detecting and fixing these cases.

6 Evaluation

In this section we evaluate our data types that follow the non-uniform replication model. To
this end, we compare our designs against state-of-the-art CRDT alternatives: delta-based
CRDTs [1] that maintain full object replicas efficiently by propagating updates as deltas
of the state; and computational CRDTs [19] that maintain non-uniform replicas using a
state-based approach.

Our evaluation is performed by simulation, using a discrete event simulator. To show
the benefit in terms of bandwidth and storage, we measure the total size of messages sent
between replicas for synchronization (total payload) and the average size of replicas.

We simulate a system with 5 replicas for each object. Both our designs and the compu-
tational CRDTs support up to 2 replica faults by propagating all operations to, at least, 2
other replicas besides the source replica. We note that this limits the improvement that our
approach could achieve, as it is only possible to avoid sending an operation to two of the five
replicas. By either increasing the number of replicas or reducing the fault tolerance level, we
could expect that our approach would perform comparatively better than the delta-based
CRDTs.

6.1 Top-K with removals
We begin by comparing our Top-K design (NuCRDT) with a delta-based CRDT set [1]
(Delta CRDT) and the top-K state-based computational CRDT design [19] (CCRDT).

The top-K was configured with K equal to 100. In each run, 500000 update operations
were generated for 10000 Ids and with scores up to 250000. The values used in each operation
were randomly selected using a uniform distribution. A replica synchronizes after executing
100 events.

Given the expected usage of top-K for supporting a leaderboard, we expect the remove
to be an infrequent operation (to be used only when a user is removed from the game).
Figures 1 and 2 show the results for workloads with 5% and 0.05% of removes respectively
(the other operations are adds).

In both workloads our design achieves a significantly lower bandwidth cost when compared
to the alternatives. The reason for this is that our design only propagates operations that
will be part of the top-K. In the delta-based CRDT, each replica propagates all new updates
and not only those that are part of the top. In the computational CRDT design, every
time the top is modified, the new top is propagated. Additionally, the proposed design of
computational CRDTs always propagates removes.

OPODIS 2017

0:14 Non-uniform Replication

 0

 50

 100

 150

 200

 250

 300

 350

 400

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e

Pa
yl

oa
d
 (

M
B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

A
ve

ra
g
e

R
ep

lic
a

S
iz

e
(M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 1 Top-K with removals: payload size and replica size, workload of 95/5

 0

 50

 100

 150

 200

 250

 300

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e

Pa
yl

oa
d
 (

M
B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0

 2

 4

 6

 8

 10

 12

 14

100k 200k 300k 400k 500k

A
ve

ra
g
e

R
ep

lic
a

S
iz

e
(M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 2 Top-K with removals: payload size and replica size, workload of 99.95/0.05

The results for the replica size show that our design is also more space efficient than
previous designs. This is a consequence of the fact that each replica, besides maintaining
information about local operations, only keeps information from remote operations received
for guaranteeing fault-tolerance and those that have influenced the top-K at some moment
in the execution. The computational CRDT design additionally keeps information about
all removes. The delta-based CRDT keeps information about all elements that have not
been removed or overwritten by a larger value. We note that as the percentage of removes
approaches zero, the replica sizes of our design and that of computational CRDT starts to
converge to the same value. The reason for this is that the information maintained in both
designs is similar and our more efficient handling of removes starts becoming irrelevant. The
opposite is also true: as the number of removes increases, our design becomes even more
space efficient when compared to the computational CRDT.

6.2 Top Sum
To evaluate our Top Sum design (NuCRDT), we compare it against a delta-based CRDT map
(Delta CRDT) and a state-based computational CRDT implementing the same semantics
(CCRDT).

The top is configured to display a maximum of 100 entries. In each run, 500000 update
operations were generated for 10000 Ids and with challenges awarding scores up to 1000. The
values used in each operation were randomly selected using a uniform distribution. A replica
synchronizes after executing 100 events.

Figure 3 shows the results of our evaluation. Our design achieves a significantly lower
bandwidth cost when compared with the computational CRDT, because in the computational
CRDT design, every time the top is modified, the new top is propagated. When compared
with the delta-based CRDTs, the bandwidth of NuCRDT is approximately 55% of the
bandwidth used by delta-based CRDTs. As delta-based CRDTs also include a mechanism for
compacting propagated updates, the improvement comes from the mechanisms for avoiding

G. Cabrita and N. Preguiça 0:15

 1

 10

 100

 1000

100k 200k 300k 400k 500k

T
ot

al
 M

es
sa

g
e

Pa
yl

oa
d
 (

M
B
),

 l
og

1
0

Number of Events

NuCRDT
CCRDT

Delta CRDT

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

100k 200k 300k 400k 500k

A
ve

ra
g
e

R
ep

lic
a

S
iz

e(
M

B
)

Number of Events

NuCRDT
CCRDT

Delta CRDT

Figure 3 Top Sum: payload size and replica size

propagating operations that will not affect the top elements, resulting in less messages being
sent.

The results for the replica size show that our design also manages to be more space
efficient than previous designs. This is a consequence of the fact that each replica, besides
maintaining information about local operations, only keeps information of remote operations
received for guaranteeing fault-tolerance and those that have influenced the top elements at
some moment in the execution.

7 Conclusions

In this paper we proposed the non-uniform replication model, an alternative model for
replication that combines the advantages of both full replication, by allowing any replica to
reply to a query, and partial replication, by requiring that each replica keeps only part of
the data. We have shown how to apply this model to eventual consistency, and proposed
a generic operation-based synchronization protocol for providing non-uniform replication.
We further presented the designs of two useful replicated data types, the Top-K and Top
Sum, that adopt this model (in appendix, we present two additional designs: Top-K without
removals and Histogram). Our evaluation shows that the application of this new replication
model helps to reduce the message dissemination costs and the size of replicas.

In the future we plan to study which other data types can be designed that adopt this
model and to study how to integrate these data types in cloud-based databases. We also
want to study how the model can be applied to strongly consistent systems.

Acknowledgments

This work has been partially funded by CMU-Portugal research project GoLocal Ref. CMUP-
ERI/TIC/0046/2014, EU LightKone (grant agreement n.732505) and by FCT/MCT project
NOVA-LINCS Ref. UID/CEC/04516/2013. Part of the computing resources used in this
research were provided by a Microsoft Azure Research Award.

References
1 Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state replicated data types.

J. Parallel Distrib. Comput., 111:162–173, 2018. doi:10.1016/j.jpdc.2017.08.003.
2 Sérgio Almeida, João Leitão, and Luís Rodrigues. ChainReaction: A Causal+ Consis-

tent Datastore Based on Chain Replication. In Proc. 8th ACM European Conference on
Computer Systems, EuroSys ’13, 2013. doi:10.1145/2465351.2465361.

3 Gustavo Alonso. Partial database replication and group communication primitives. In Proc.
European Research Seminar on Advances in Distributed Systems, 1997.

OPODIS 2017

0:16 Non-uniform Replication

4 Daniel Barbará-Millá and Hector Garcia-Molina. The Demarcation Protocol: A Tech-
nique for Maintaining Constraints in Distributed Database Systems. The VLDB Journal,
3(3):325–353, July 1994. doi:10.1007/BF01232643.

5 James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wil-
son Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi
Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. Spanner:
Google’s Globally-distributed Database. In Proc. 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, 2012.

6 Tyler Crain and Marc Shapiro. Designing a Causally Consistent Protocol for Geo-
distributed Partial Replication. In Proc. 1st Workshop on Principles and Practice of Con-
sistency for Distributed Data, PaPoC ’15, 2015. doi:10.1145/2745947.2745953.

7 Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: Amazon’s Highly Available Key-value Store. In Proc. 21st ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07, 2007. doi:10.1145/1294261.
1294281.

8 Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard
Sturgis, Dan Swinehart, and Doug Terry. Epidemic Algorithms for Replicated Database
Maintenance. In Proc. 6th Annual ACM Symposium on Principles of Distributed Comput-
ing, PODC ’87, 1987. doi:10.1145/41840.41841.

9 Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, and Laurent Massouliea-
cute;. Epidemic Information Dissemination in Distributed Systems. Computer, 37(5), May
2004. doi:10.1109/MC.2004.1297243.

10 Konstantinos Kloudas, Margarida Mamede, Nuno Preguiça, and Rodrigo Rodrigues. Pixida:
Optimizing Data Parallel Jobs in Wide-area Data Analytics. Proc. VLDB Endow., 9(2):72–
83, October 2015. doi:10.14778/2850578.2850582.

11 Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized Structured Storage
System. SIGOPS Oper. Syst. Rev., 44(2), April 2010. doi:10.1145/1773912.1773922.

12 Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Com-
mun. ACM, 21(7), July 1978. doi:10.1145/359545.359563.

13 Leslie Lamport. The Part-time Parliament. ACM Trans. Comput. Syst., 16(2), May 1998.
doi:10.1145/279227.279229.

14 Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and Rodrigo
Rodrigues. Making geo-replicated systems fast as possible, consistent when necessary. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’12, pages 265–278, 2012.

15 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t
Settle for Eventual: Scalable Causal Consistency for Wide-area Storage with COPS. In
Proc. 23rd ACM Symposium on Operating Systems Principles, SOSP ’11, 2011. doi:10.
1145/2043556.2043593.

16 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Stronger
Semantics for Low-latency Geo-replicated Storage. In Proc. 10th USENIX Conference on
Networked Systems Design and Implementation, nsdi’13, 2013.

17 Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and Amr El Ab-
badi. Low-latency Multi-datacenter Databases Using Replicated Commit. Proc. VLDB
Endow., 6(9), July 2013. doi:10.14778/2536360.2536366.

18 Henrique Moniz, João Leitão, Ricardo J. Dias, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. Blotter: Low Latency Transactions for Geo-Replicated Storage. In

G. Cabrita and N. Preguiça 0:17

Proceedings of the 26th International Conference on World Wide Web, WWW ’17, pages
263–272, 2017. doi:10.1145/3038912.3052603.

19 David Navalho, Sérgio Duarte, and Nuno Preguiça. A Study of CRDTs That Do Compu-
tations. In Proc. 1st Workshop on Principles and Practice of Consistency for Distributed
Data, PaPoC ’15, 2015. doi:10.1145/2745947.2745948.

20 Patrick E. O’Neil. The Escrow Transactional Method. ACM Trans. Database Syst.,
11(4):405–430, December 1986. URL: http://doi.acm.org/10.1145/7239.7265, doi:
10.1145/7239.7265.

21 Yasushi Saito and Marc Shapiro. Optimistic Replication. ACM Comput. Surv., 37(1),
March 2005. doi:10.1145/1057977.1057980.

22 Nicolas Schiper, Pierre Sutra, and Fernando Pedone. P-Store: Genuine Partial Replication
in Wide Area Networks. In Proc. 29th IEEE Symposium on Reliable Distributed Systems,
SRDS ’10, 2010. doi:10.1109/SRDS.2010.32.

23 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free Repli-
cated Data Types. In Proc. 13th International Conference on Stabilization, Safety, and
Security of Distributed Systems, SSS’11, 2011.

24 Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for
geo-replicated systems. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 385–400, 2011. doi:10.1145/2043556.2043592.

25 Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Mar-
cos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based Service Level Agreements
for Cloud Storage. In Proc. 24th ACM Symposium on Operating Systems Principles, SOSP
’13, 2013. doi:10.1145/2517349.2522731.

26 Albert van der Linde, João Leitão, and Nuno Preguiça. ∆-crdts: Making δ-crdts delta-
based. In Proceedings of the 2Nd Workshop on the Principles and Practice of Consistency
for Distributed Data, PaPoC ’16, pages 12:1–12:4, 2016. doi:10.1145/2911151.2911163.

27 Werner Vogels. Eventually Consistent. Commun. ACM, 52(1), January 2009. doi:10.
1145/1435417.1435432.

OPODIS 2017

0:18 Non-uniform Replication

A APPENDIX

In this appendix we present two additional NuCRDT designs. These designs exemplify the
use of different techniques for the creation of NuCRDTs.

A.1 Top-K without removals
A simpler example of a data type that fits our proposed replication model is a plain top-K,
without support for the remove operation. This data type allows access to the top-K elements
added to the object and can be used, for example, for maintaining a leaderboard in an online
game. The top-K defines only one update operation, add(id,score), which adds element id
with score score. The get() operation simply returns the K elements with largest scores.
Since the data type does not support removals, and elements added to the top-K which do
not fit will simply be discarded this means the only case where operations have an impact in
the observable state are if they are core operations – i.e. they are part of the top-K. This
greatly simplifies the non-uniform replication model for the data type.
Algorithm 4 Top-K NuCRDT
1: elems : {〈id, score〉} : initial {}
2:
3: get() : set
4: return elems
5:
6: prepare add(id, score)
7: generate add(id, score)
8:
9: effect add(id, score)

10: elems = topK(elems ∪ {〈id, score〉})
11:
12: maskedForever(loglocal, S, logrecv) : set of operations
13: adds = {add(id1, score1) ∈ loglocal : (∃add(id2, score2) ∈ logrecv : id1 = id2 ∧ score2 > score1)
14: return adds
15:
16: mayHaveObservableImpact(loglocal, S, logrecv) : set of operations
17: return {} . Not required for this data type
18:
19: hasObservableImpact(loglocal, S, logrecv) : set of operations
20: return {add(id, score) ∈ loglocal : 〈id, score〉 ∈ S.elems}
21:
22: compact(ops): set of operations
23: return ops . This data type does not use compaction

Algorithm 4 presents the design of the top-K NuCRDT. The prepare-update add(id,score)
generates an effect-update add(id,score).

Each object replica maintains only a set of K tuples, elems, with each tuple being
composed of an id and a score. The execution of add(id,score) inserts the element into the
set, elems, and computes the top-K of elems using the function topK. The order used for the
topK computation is as follows: 〈id1, score1〉 > 〈id2, score2〉 iff score1 > score2 ∨ (score1 =
score2 ∧ id1 > id2). We note that the topK function returns only one tuple for each element
id.

Function maskedForever computes the adds that become masked by other add opera-
tions for the same id that are larger according to the defined ordering. Due to the way the
top is computed, the lower values for some given id will never be part of the top. Function
mayHaveObservableImpact always returns the empty set since operations in this data
type are always core or forever masked. Function hasObservableImpact returns the set of
unpropagated add operations which add elements that are part of the top – essentially, the

G. Cabrita and N. Preguiça 0:19

add operations that are core at the time of propagation. Function compact simply returns
the given ops since the design does not require compaction.

A.2 Histogram
We now introduce the Histogram NuCRDT that maintains a histogram of values added to
the object. To this end, the data type maintains a mapping of bins to integers and can be
used to maintain a voting system on a website. The semantics of the operations defined in
the histogram is the following: add(n) increments the bin n by 1; merge(histogramdelta) adds
the information of a histogram into the local histogram; get() returns the current histogram.
Algorithm 5 Histogram NuCRDT
1: histogram : map bin 7→ n : initial []
2:
3: get() : map
4: return histogram
5:
6: prepare add(bin)
7: generate merge([bin 7→ 1])
8:
9: prepare merge(histogram)

10: generate merge(histogram)
11:
12: effect merge(histogramdelta)
13: histogram = pointwiseSum(histogram, histogramdelta)
14:
15: maskedForever(loglocal, S, logrecv) : set of operations
16: return {} . Not required for this data type
17:
18: mayHaveObservableImpact(loglocal, S, logrecv) : set of operations
19: return {} . Not required for this data type
20:
21: hasObservableImpact(loglocal, S, logrecv) : set of operations
22: return loglocal

23:
24: compact(ops): set of operations
25: deltas = {hist : merge(histdelta) ∈ ops}
26: return {merge(pointwiseSum(deltas))}

This data type is implemented in the design presented in Algorithm 5. The prepare-
update add(n) generates an effect-update merge([n 7→ 1]). The prepare-update operation
merge(histogram) generates an effect-update merge(histogram).

Each object replica maintains only a map, histogram, which maps bins to integers. The
execution of a merge(histogramdelta) consists of doing a pointwise sum of the local histogram
with histogramdelta.

Functions maskedForever and mayHaveObservableImpact always return the empty
set since operations in this data type are always core. Function hasObservableImpact
simply returns loglocal, as all operations are core in this data type. Function compact takes
a set of instances of merge operations and joins the histograms together returning a set
containing only one merge operation.

OPODIS 2017

Transparent Speculation in
Geo-Replicated Transactional Data Stores

Abstract
This work presents Speculative Transaction Replication (STR), a
transaction protocol for geo-distributed, partially replicated trans-
actional data stores that exploits a form of transparent speculation
to reduce inter-replica latency. In addition, we define a new consis-
tency model, Speculative Snapshot Isolation (SPSI), that extends
the semantics of Snapshot Isolation (SI) to shelter applications
from the subtle anomalies that can arise from using speculative
transaction processing. SPSI extends SI in an intuitive and rigorous
fashion by specifying desirable atomicity and isolation guarantees
that must hold when using speculative execution.

STR provides a form of speculation, called internal speculation,
that is fully transparent for programmers (it does not expose
the effects of misspeculations to clients). Since the speculation
techniques employed by STR satisfy SPSI, they can be leveraged
by application programs in a transparent way, with no source-code
modification and no anomalous behavior. The core of STR is
an innovative, fully decentralized, concurrency control mecha-
nism, which aims not only to ensure (SPSI-)safe speculations in
a lightweight and scalable fashion, but also to enhance the chances
of successful speculation via a novel transaction timestamping
mechanism that we called precise clocks.

We assess STR’s performance on up to nine geo-distributed
Amazon EC2 data centers, using both synthetic benchmarks as
well as realistic benchmarks (TPC-C and RUBiS). Our evaluation
shows that STR achieves throughput gains up to 11× and latency
reduction up to 10×, in workloads characterized by low inter-data
center contention. Furthermore, thanks to a self-tuning mecha-
nism that dynamically and transparently enables and disables
speculation, STR offers robust performance even when faced with
unfavourable workloads that suffer from high misspeculation rates.

1. Introduction
Modern online services are increasingly deployed over
geographically-scattered data centers (geo-replication) [10, 24, 26].

[Copyright notice will appear here once ’preprint’ option is removed.]

Geo-replication allows services to remain available even in the
presence of outages affecting entire data centers and it reduces
access latency by bringing data closer to clients. On the down side,
though, the performance of geographically distributed data stores
is challenged by large communication delays between data centers.

To provide ACID transactions, a desirable feature that can
greatly simplify application development [36], some form of
global (i.e., inter-data center) certification is needed to safely
detect conflicts between concurrent transactions executing at
different data centers. The adverse performance impact of
global certification is twofold: (i) system throughput can be
severely impaired, as transactions need to hold pre-commit locks
during their global certification phase, which can cripple the
effective concurrency that these systems can achieve; and (ii)
client-perceived latency is increased, since global certification
lies in the critical path of transaction execution.

Transparent speculation. This work investigates the use of
speculative processing techniques to alleviate both of the above
problems. We focus on geo-distributed partially replicated
transactional data stores that provide Snapshot Isolation, a widely
employed consistency criterion [11, 14] (SI), and propose a novel
distributed concurrency control scheme, Speculative Snapshot
Isolation (SPSI), that supports a form of transparent speculative
execution called speculative reads.

Speculative reads allow transactions to observe the data item
versions produced by pre-committed transactions, instead of
blocking until they are committed or aborted. As such, speculative
reads can reduce the “effective duration” of pre-commit locks (i.e.,
as perceived by conflicting transactions), thus reducing transaction
execution time and enhancing the maximum degree of parallelism
achievable by the system — and, ultimately, throughput. We say
that speculative reads are an internal speculation technique, as
misspeculations caused by it never surface to the clients and can
be dealt with by simply re-executing the affected transaction.

Avoiding the pitfalls of speculation. Past work has demon-
strated how the use of speculation, either transparently or requiring
source-code modification [16, 18, 22, 30, 39] can significantly
enhance the performance of distributed [22, 30–32, 39] and
single-site [16] transactional systems. However, these approaches
suffer from several limitations:

1. Unfit for geo-distribution/partial replication. Some ex-
isting works in this area [22, 32, 39] were not designed for partially
replicated geo-replicated data stores. On the contrary, they target

1 2017/10/28

Read(B) ->B0

N1

N2
B

T1 Exec

N3

A

C

Prepare(C1)

Prepare(B1)

T2 Exec

Read(C) ->C1

Invariant: B!=C
Init: B=4, C=2
T1: B+=2
 C+=2
T2: c=read(C)
 b=read(B)
 d=1/(b-c)

(a) Atomicity violation — T2 observes T1’s pre-committed version of data item C, but not
of B. This breaks the application invariant (B6=C), causing an unexpected division by zero
exception that could crash the application at node N3.

N1

N2
B

T1 Exec

N3

A

C

Prepare(B1)
Prepare(B2)

T2 Exec

Prepare(A1)
Prepare(A2)

Read(B)->B2

Read(A)->A1

T3 Exec

 Invariant:A=B*2
 Init: A=2, B=1
 T1: A=4, B=2
 T2: A=10, B=5
 T3: a=read(A)
 b=read(B)
 while (b!=a)
 ++b
 <Loop body>

(b) Isolation violation — T3 observes the pre-committed updates of two conflicting
transactions, namely T1 and T2. T3 enters an infinite loop, as the application invariant
(A=B*2) is broken due to the concurrency anomaly.

Figure 1: Examples illustrating possible concurrency anomalies caused
by speculative reads. N1, N2 and N3 are three nodes that store data items
A, B and C, respectively.

different data models (i.e., full replication [32, 39]) or rely on tech-
niques that impose prohibitive costs in WAN environments, such as
the use of centralized sequencers to totally order transactions [22].

2. Subtle concurrency anomalies. Existing partially repli-
cated geo-distributed transactional data stores that allow specula-
tive reads [16, 19, 31] expose applications to anomalies that do
not arise in non-speculative systems and that can severely under-
mine application correctness. Figure 1 illustrates two examples of
concurrency anomalies that may arise with these systems. The root
cause of the problem is that existing systems allow speculative
reads to observe any pre-committed data version. This exposes ap-
plications to data snapshots that reflect only partially the updates of
transactions (Fig. 1a) and/or include versions created by conflicting
concurrent transactions (Fig. 1b). These anomalies have the fol-
lowing negative impacts: (i) transaction execution may be affected
to the extent to generate anomalous/unexpected behaviours (e.g.,
crashing the application or hanging it in infinite loops); and (ii)
they can externalize non-atomic/non-isolated snapshots to clients.

3. Performance robustness. If used injudiciously, speculation
can hamper performance. As we will show, in adverse scenarios
(e.g., large likelihood of transaction aborts and high system load)
misspeculations can significantly penalize both user-perceived
latency and system throughput.

Contributions. This paper presents the following contributions:
• Speculative Transaction Replication (STR), a novel speculative

transactional protocol for partially replicated geo-distributed
data stores (§5). STR shares several key design choices with
state-of-the-art strongly consistent data stores [10, 11, 33],
which contribute to its efficiency and scalability. These
include: multi-versioning, which maximizes efficiency in read-
dominated workloads [8], purely decentralized concurrency con-

trol based on loosely synchronized physical clocks [10, 11, 34],
and support for partial replication [10, 23]. The key contribution
of STR is its innovative, fully decentralized, concurrency control
mechanism, which aims not only to ensure (SPSI-)safe specula-
tions in a lightweight and scalable fashion, but also to enhance
the chances of successful speculation via a novel transaction
timestamping mechanism that we called precise clocks.
• Speculative Snapshot Isolation (SPSI), a novel consistency

model that is the foundation of STR (§4). Besides guaranteeing
the familiar Snapshot Isolation (SI) to committed transactions,
SPSI provides clear and rigorous guarantees on the atomicity
and isolation of the snapshots observed and produced by
executing transactions. In a nutshell, SPSI requires an executing
transaction to read data item versions committed before it started
(as in SI), but it also allows to atomically observe the effects
of non-conflicting transactions that originated on the same node
and pre-committed before the transaction started. This shelters
programmers from having to reason about complex concurrency
anomalies that can otherwise arise in speculative systems.
• A lightweight yet effective self-tuning mechanism, based on

a feedback control loop, that dynamically enables or disables
speculation based on the workload characteristics (§5.5).
• We evaluate STR on up to nine geo-distributed Amazon EC2

data centers, using both synthetic and realistic benchmarks
(TPC-C [4] and RUBiS [2]) (§6). Our experimental study shows
that the use of internal speculation (speculative reads) yields up
to 11× throughput improvements and 10× latency reduction
in a fully transparent way, i.e., requiring no compensation logic.

2. Related Work

Geo-replication. The problem of designing efficient mechanisms
to ensure strong consistency semantics in geo-replicated data stores
has been extensively studied. A class of geo-replicated systems [12,
41] is based on the state-machine replication (SMR) [25] approach,
in which replicas first agree on the serialization order of transac-
tions and then execute them without further coordination. Other re-
cent systems [10, 11, 24, 28] adopt the deferred update (DU) [21]
approach, in which transactions are first locally executed and then
globally certified. This approach is more scalable than SMR in
update intensive workloads [21, 43] and, unlike SMR, it can seam-
lessly support non-deterministic transactions [35]. The main down
side of the DU approach is that locks must be maintained for the
whole duration of transactions’ global certification, which can
severely hinder throughput [40]. STR builds on the DU approach
and tackles its performance limitation via speculative techniques.

The property introduced in this work, SPSI, is related to PSI
(Parallel Snapshot Isolation) [37], a consistency criterion that
relaxes SI in order to reduce latency in geo-distributed data stores.
When compared with SPSI, PSI specifies a weaker consistency
criterion for final committed transactions: PSI requires that trans-
actions read the most recent committed version of some data only
if this is created by a transaction that originated at the same site.
This allows for anomalies that are not possible in SI (called long
forks [37]), and that are also excluded by SPSI, which guarantees

2 2017/10/28

SI-semantics for final committed transactions, i.e., they only
observe the most recent committed version independently from the
site in which it was originated. Further, PSI prohibits transactions
from reading any version that is not final committed, which
represents one of the key motivations underlying the definition of
SPSI: sparing transactions from waiting for pre-commit locks to
be released, while still providing rigorous consistency guarantees
to shelter applications from arbitrary concurrency anomalies.

Speculation. The idea of letting transactions “optimistically”
borrow, in a controlled manner, data updated by concurrent
transactions has already been investigated in the past. SPECULA
[32] and Aggro [29] have applied this idea to local area clusters
in which data is fully replicated via total-order based coordination
primitives; Jones et. al. [22] applied this idea to partially
replicated/distributed databases, by relying on a central coordinator
to totally order distributed transactions. These solutions provide
consistency guarantees on executing transactions (and not only
on committed ones) that are similar in spirit to the ones specified
by SPSI. However, these systems rely on solutions (like a
centralized transaction coordinator or global sequencer) that
impose unacceptably large overheads in geo-distributed settings.

Other works in the distributed database literature, e.g., [16, 19,
31], have explored the idea of speculative reads (sometimes re-
ferred to as early lock release) in decentralized transactional proto-
cols for partitioned databases, i.e., the same system model assumed
by STR. However, these protocols provide no guarantees on the
consistency of the snapshots observed by transactions (that eventu-
ally abort) during their execution and may expose applications to
subtle concurrency bugs, such as the ones exemplified in Figure 1.

Another form of speculation that strives to reduce perceived-
latency by exposing preliminary results to external clients, i.e.,
speculative commits, has been explored by various works. Helland
et. al. advocated the guesses and apologies programming paradigm
[20], in which systems expose preliminary results of requests
(guesses), but reconcile the exposed results if they are different
from final results (apologies). A similar approach is adopted
also in other recent works, like PLANET [30] and ICG [18].
Unlike STR, which is totally transparent to programmers, these
approaches employ a form of external speculation, which requires
source-code modification to incorporate compensation logics.
Furthermore, these approaches are designed to operate on
conventional storage systems, which do not support speculative
reads of pre-committed data. As such, although these approaches
may reduce user-perceived latency, they do not tackle the problem
of reducing transaction blocking time, as STR does. We will
provide experimental evidence supporting this claim in§ 6.

Mixing consistency levels. Some recent systems exploit the co-
existence of multiple consistency levels to enhance system per-
formance. Gemini [26] and Indigo [6] identify and exploit the
presence of commutative operations that can be executed with
lightweight synchronization schemes, i.e., causal consistency, with-
out breaking application invariants. These techniques are orthog-
onal to STR, which tackles the problem of enhancing the perfor-
mance of non-commutative transactions that demand stronger con-

sistency criteria (i.e., SI). Salt [44] introduced the notion of BASE
transactions, i.e., classic ACID transactions that are chopped into
a sequence of sub-transactions that can externalize intermediate
states of their encompassing transaction to other BASE transac-
tions. This approach, analogously to STR’s speculative reads, aims
to reduce lock duration and enhance throughput. Differently from
STR, though, Salt requires programmers to define which interme-
diate states of which BASE transactions should be externalized and
to reason on the correctness implications of exposing such states
to other BASE transactions. STR’s SPSI semantics spare program-
mers from this source of complexity, by ensuring that transactions
always observe and produce atomic and isolated snapshots.

3. System and data model
Our target system model consists of a set of geo-distributed data
centers, each hosting a set of nodes. In the following, we assume
a key-value data model. This is done for simplicity and since
our current implementation of STR runs on a key-value store.
However, the protocol we present is agnostic to the underlying
data model (e.g., relational or object-oriented).

Data and replication model. The dataset is split into multiple
partitions, each of which is responsible for a disjoint key range and
maintains multiple timestamped versions for each key. Partitions
may be scattered across the nodes in the system using arbitrary
data placement policies. Each node may host multiple partitions,
but no node or data center is required to host all partitions.

A partition can be replicated within a data center and across
data centers. STR employs synchronous master-slave replication
to enforce fault tolerance and transparent fail over, as used, e.g., in
[5, 10]. A partition has a master replica and several slave replicas.
We say that a key/partition is remote for a node, if that node does
not replicate that key/partition.

Synchrony assumptions. STR requires that nodes be equipped
with loosely synchronized, conventional hardware clocks, which
we only assume to monotonically move forward. Additional
synchrony assumptions are required to ensure the correctness of
the synchronous master-slave replication scheme used by STR
in presence of failures [15]. STR integrates a classic single-master
replication protocol, which assumes perfect failure detection
capabilities [9]. However, it would be relatively straightforward
to replace the replication scheme currently employed in STR to
use techniques, like Paxos [13], which require weaker synchrony
assumptions.

Transaction execution model. Transactions are first executed in
the node where they were originated. When they request to commit,
they undergo a local certification phase, which checks for conflicts
with concurrent transactions in the local node. If the local certifica-
tion phase succeeds, we say that transactions local commit and are
attributed a local commit timestamp, noted LC. Next, they execute
a global certification phase that detects conflicts with transactions
originated at any other node in the system. Transactions that pass
the global certification phase are said to final commit and are at-
tributed a final commit timestamp, notedFC. Commit requests are

3 2017/10/28

confirmed to applications only if the transaction is final committed,
which guarantees that speculative states never surface to clients.
However, the versions created by a local committed transaction
T can be exposed to other transactions via the speculative read
mechanism. We say that these transactions data depend on T .

4. The SPSI consistency model
We introduce Speculative Snapshot Isolation (SPSI), a consistency
model that generalizes the well-known SI criterion to define a set
of guarantees that shelter applications from the subtle anomalies
(§Fig. 1) that may arise when using speculative techniques. Before
presenting the SPSI specification, we first recall the definition
of SI [42]:
• SI-1. (Snapshot Read) All operations read the most recent

committed version as of the time when the transaction began.
• SI-2. (No Write-Write Conflicts) The write-sets of any

committed concurrent transactions must be disjoint.

We now introduce the SPSI specification:
• SPSI-1. (Speculative Snapshot Read) A transaction T

originated at a node N at time t must observe the most recent
versions created by transactions that i) final commit with
timestamp FC ≤ t (independently of the node where these
transactions originated), and ii) local commit with timestamp
LC≤t and originated at node N .
• SPSI-2. (No Write-Write Conflicts among Final Committed

Transactions) The write-sets of any final committed concurrent
transactions must be disjoint.
• SPSI-3. (No Write-Write Conflicts among Transactions in a

Speculative Snapshot) Let S be the set of transactions included
in a snapshot. The write-sets of any concurrent transactions
in S must be disjoint.
• SPSI-4. (No Dependencies from Uncommitted Transactions)

A transaction can only be final committed if it does not data
depend on any local-committed or aborted transaction.

SPSI-1 extends the notion of snapshot, at the basis of the SI
definition, to provide the illusion that transactions execute on
immutable snapshots, which reflect the execution of all the transac-
tions that local committed before their activation and originated on
the same node. By demanding that the snapshots over which trans-
actions execute reflect only the effects of locally activated transac-
tions, SPSI allows for efficient implementations, like STR’s, which
can decide whether it is safe to observe the effects of a local com-
mitted transaction based solely on local information. Note that prop-
erty SPSI-1 is specified for any transaction, including the ones that
eventually abort (because some other SPSI property is violated).
Hence, SPSI-1 must hold throughout the execution of transactions.
This has also another relevant implication: assume that a transaction
T , which started at time t, reads speculatively from a local com-
mitted transaction T ′ with timestamp LC≤t, and that, later on,
T ′ final commits with timestamp FC>t; at this point T violates
the first sub-property of SPSI-1. Hence, T must be aborted before
T ′ is allowed to final commit. The same applies in case T ′ aborts:

since SPSI-1 prohibits developing data dependencies from aborted
transactions, also in this case, T must be aborted before T ′ is.

SPSI-2 coincides with SI-2, ensuring the absence of write-write
conflicts among concurrent final committed transactions. SPSI-3
complements SPSI-1 by ensuring that the effects of conflicting
transactions can never be observed. Finally, SPSI-4 ensures that
a transaction can be final committed only if it does not depend
on transactions that may eventually abort.

Which anomalies does SPSI allow? SPSI provides identical
guarantees to SI for final committed transactions. As for local
committed and active transactions, SPSI allows for histories
that would be rejected by SI, e.g., observing a version locally
committed by a transaction that eventually aborts due to a conflict
with some remote transaction. However, we argue that these
anomalies allowed by SPSI are unharmful for applications
designed to operate using SI. This is easy to show if one considers
that SPSI ensures that any transaction T behaves like if it had
executed under SI in a history that includes only the transactions
known by the node in which T originated at the time in which T
was activated. In other words, the snapshot observable by T in any
SPSI-compliant historyH is equivalent to the one that T would
observe in some SI-compliant historyH′, which differs fromH
only becauseH′ may omit some remote transaction concurrent
with T . Clearly, if an application works correctly with SI, i.e., it
is correct with any SI-compliant history (including history H′),
the application will be also be correct when faced with history
H′ — and, thus, when executing the SPSI-compliant historyH.

Which anomalies does SPSI prevent? In Fig. 1 we have
already exemplified some of the concurrency anomalies that SPSI
prevents, and which could lead applications to hang or crash.
Interestingly, while analyzing the TPC-C and RUBiS benchmarks,
we have identified several concurrency bugs that may arise and
cause applications’ crashes, if SPSI’s guarantees are not enforced.

// New-Order
...
Order order;
storage->Put(order);
for (int i = 0; i < order.ol_count; i++) {

OrderLine order_line = create_ol(order, i);
storage->Put(order_line);
...

}

// Order-Status
...
Order order = storage->Read(customer.last_order);
for (int i = 0; i < order.ol_count; i++) {

OrderLine ol = storage->Read(order.ol, i)
// parse throws a Null Pointer Exception if ol is null
parse(ol);
...

}

Listing 1: Potential anomaly prevented by SPSI in TPC-C.

Listing 1 illustrates one of the anomalies we spotted in TPC-C
benchmark, which involves the New Order (NO) and Order Status
(OS) transactions. NO inserts a new order for a customer and then
creates some number of corresponding order lines. OS fetches the
identifies of the last order of a given customer, and the retrieves
the corresponding order lines. In a partially-replicated setting, the
order record may be stored in the node where the NO transaction

4 2017/10/28

was activated, but the order lines may be stored in some different
node. An injudicious use of speculative reads may allow a OS
transaction to read the pre-committed order record of a concurrent
NO, but then allow the OS to miss the corresponding order lines
(an atomicity violation that is prevented by SPSI-1). In this case,
the parse method in OS would be fed with a null pointer and
generate an unexpected exception, which would never occur with
SI (or SPSI) and could lead to a crash of the application.

5. The STR protocol
This section is devoted to introduce the Speculative Transaction
Replication (STR) protocol. For reasons of clarity, we present the
design of STR incrementally. We first present a non-speculative
base protocol that implements a SI-compliant transaction system.
This base protocol is then extended with a set of mechanisms
aimed to support speculation in an efficient and SPSI-compliant
way. Finally, we discuss the fault tolerance of STR.

Due to space constraints, we omit the presentation of the data
structures used to track transaction data dependencies. We also
omit the correctness proof, which will be made available after
the paper is accepted.

5.1 Base non-speculative protocol
The base protocol is a multi-versioned, SI-compliant algorithm
that relies on a fully decentralized concurrency control scheme
similar to that employed by recent, highly scalable systems, like
Spanner or Clock-SI [10, 11]. In the following, we describe the
main phases of STR’s base protocol.

Execution. When a transaction is activated, it is attributed a
read snapshot, noted as RS, equal to the physical time of the
node in which it was originated. The read snapshot determines
which data item versions are visible to the transaction. Upon a
read, a transaction T observes the most recent version v having
final commit timestamp v.FC ≤ T.RS. However, if there
exists a pre-committed version v′ with a timestamp smaller
than T.RS, then T must wait until the pre-committed version
is committed/aborted. In fact, as it will become clear shortly, the
pre-committed version may eventually commit with a timestamp
FC≤RS — in which case T should include it in snapshot —
or FC>RS — in which case it should not be visible to T .

Note that read requests can be sent to any replica that maintains
the requested data item. Also, if a node receives a read request with
a read snapshot RS higher than its current physical time, the node
delays serving the request until its physical clock catches up with
RS. Instead, writes are always processed locally and are main-
tained in a transaction’s private buffer during the execution phase.

Certification. Read-only transactions can be immediately
committed after they complete execution. Update transactions,
instead, first check for write-write conflicts with concurrent local
transactions. If T passes this local certification stage, it activates
a, 2PC-based, global certification phase by sending a pre-commit
request to the master replicas of any key it updated and for which
the local node is not a master replica. If a master replica detects

no conflict, it acquires pre-commit locks, and proposes its current
physical time for the pre-commit timestamp.

Replication. If a master replica successfully pre-commits a
transaction, it synchronously replicates the pre-commit request
to its slave replicas. These, in their turn, send to the coordinator
their physical time as proposed pre-commit timestamps.

Commit. After receiving replies from all the replicas of updated
partitions, the coordinator calculates the commit timestamp as the
maximum of the received pre-commit timestamps. Then it sends
a commit message to all the replicas of updated partitions and
replies to the client. Upon receiving a commit message, replicas
mark the version as committed and release the pre-commit locks.

This protocol has a potential for high scalability. Unfortunately,
though, in geo-distributed settings, its throughput can be severely
limited by convoy effects caused by the pre-commit locks. These
locks are held throughout the transactions’ certification phase,
which in geo-distributed data stores entail the latency of at least
one inter-data center RTT —- or more if data partitions are
replicated in different data-centers to allow for disaster recovery.
Throughout this period, concurrent transactions attempting to read
pre-committed data are conservatively blocked, which inherently
limits the maximum degree of concurrency (and hence throughput)
achievable by the system.

As we mentioned, the idea at the basis of STR is to tackle this
problem by allowing transactions to observe pre-committed ver-
sions. Materializing this idea to build STR raised several technical
challenges: guaranteeing (SPSI-)safe speculations (§ 5.2), maxi-
mizing the likelihood of successful speculation (§ 5.3) and ensuring
robust performance even in adverse workload settings (§ 5.5) .

5.2 Enabling SPSI-safe speculations
Let us discuss how to extend the base protocol described above
to incorporate speculative reads, while preserving SPSI semantics.
The example executions in Fig. 1 illustrate two possible anomalies
that could lead transactions to observe non-atomic snapshots,
which violate property SPSI-1 (Fig. 1.a), or snapshots reflecting
the execution of two conflicting transactions, which violate
property SPSI-3 (Fig. 1.b).

STR tackles these issues as follows. First, it restricts the use of
speculative reads, as mandated by SPSI-1, by allowing to observe
only pre-committed versions created by local transactions. To this
end, when a transaction local commits, it stores in the local node
the (pre-committed) versions of the data items that it updated and
that are also replicated by the local node. This is sufficient to rule
out the anomalies illustrated in Fig. 1, but it still does not suffice
to ensure properties SPSI-1 and SPSI-3. There are, in fact, two
other subtle scenarios that have to be taken into account, both
involving speculative reads of versions created by local committed
transactions that updated some remote key.

The first scenario, illustrated in Fig. 2, is associated with the
possibility of including in the same snapshot a local committed
transaction, T1 — which will eventually abort due to a remote
conflict, say with T2 — and a remote, final committed transaction,
T3, that has read from T2. In fact, the totally decentralized nature

5 2017/10/28

N1

N2
C, D

T1 Local-commit
A, B

Write(A=A1)
Write(C=C1)

Write(C=C2)
Write(E=E2)
T2 Final Commit Prepare C1: Abort

T4 Exec

Read(A)->A1

Read(B)->B3

N3
E, F

T3 Final Commit

Read(E)->E2

Write(B=B3)

C= C2

E= E2

B= B3

Figure 2: History exemplifying indirect conflicts between a local
committed transaction, T1, and a final committed transaction originated
at a different node, T3. If T4 included both T1 and T3 in its snapshot,
it would violate SPSI property 3.

of STR’s concurrency protocol, in which no node has global
knowledge of all the transactions committed in the system, makes
it challenging to detect scenarios like the ones illustrated in Fig. 2
and to distinguish them, in an exact way, from executions that
did not include transaction T2 — in which case the inclusion of
T1 and T3 in T4 would have been safe.

The mechanism that STR employs to tackle this issue is based
on the observation that such scenarios can arise only in case a
transaction, like T4, attempts to read speculatively from a local
committed transaction, like T1, which has updated some remote
key. The latter type of transactions, which we call “unsafe” transac-
tions, may have in fact developed a remote conflict with some con-
current final committed transaction (which may only be detected
during their global certification phase), breaking property SPSI-3.
In order to detect these scenarios, STR maintains two additional
data structures per transaction: OLC (Oldest Local-Commit) and
FFC (Freshest Final Commit), which track, respectively, the read
snapshot of the oldest “unsafe” local committed transaction and the
commit timestamp of the most recent remote final committed trans-
action, which the current transaction has read from (either directly
or indirectly). Thus, STR blocks transactions when they attempt to
read versions that would cause FFC to become larger than OLC.
This mechanism prevents including in the same snapshot unsafe
local committed transactions along with remote final committed
transactions that are concurrent and may conflict with them. For ex-
ample, in Fig. 2, STR blocks T4 when attempting to read B from
T3, until the outcome of T1 is determined (not shown in the figure).

The second scenario arises in case a transaction T attempts
to speculatively read a data item d that was updated by a local
committed transaction T ′, where d is not replicated locally. In this
case, if T attempted to read remotely d, it may risk to miss the
version of d created by T ′, which would violate SPSI-1. To cope
with this scenario, whenever an unsafe transaction local commits,
it temporarily (until it final commits or aborts) stores the remote
keys it updated in a special cache partition, tagging them with
the same local commit timestamp. This grants prompt and atomic
(i.e., all or nothing) access to these keys to any local transaction
that may attempt to speculatively read them.

5.3 Promoting successful speculation via Precise Clocks
Recall that, SPSI-1 requires that if a transaction T reads
speculatively from a local committed transaction T ′, and T ′

eventually final commits with a commit timestamp that is larger

than the read snapshot of T , then T has to be aborted. Thus,
in order to increase the chance of success of speculative reads,
it is important that the commit timestamps attributed to final
committed transactions are “as small as possible”.

To this end, STR proposes a new timestamping mechanism, i.e.,
Precise Clock, which is based on the following observation. The
smallest final commit timestamp, FC, attributable to a transaction
T that has read snapshot RS must ensure the following properties:
• P1. T.FC > T.RS, which guarantees that if T reads a data
item version with timestamp RS and updates it, the versions it
generates has larger timestamp than the one it read.
• P2. T.FC is larger than the read snapshot of all the transactions
T1,...,Tn, which (a) read, before T final committed, any of the
keys updated by T , and (b) did not see the versions created by T ,
i.e., T.FC>max{T1.RS,...,Tn.RS}. This condition is necessary
to ensure that T is serialized after the transactions T1,...,Tn, or,
in other words, to track write-after-read dependencies among
transactions correctly.

Ensuring property P1 is straightforward: instead of proposing
the value of the physical clock at its local node as pre-commit
timestamp, the transaction coordinator proposes T.RS+1. In
order to ensure the latter property, STR associates to each data
item an additional timestamp, called LastReader, which tracks
the read snapshot of the most recent transaction that have read
that data item. Hence, in order to ensure property P2, the nodes
involved in the global certification phase of transaction T propose,
as pre-commit timestamp, the maximum among the LastReader
timestamps of any key updated by T on that node.

It can be easily seen that the Precise Clock mechanism allows
to track write-after-read dependencies among transaction at
a finer granularity that the timestamping mechanism used in
the base protocol — which, we recall, is also the mechanism
used by non-speculative protocols like, e.g., Spanner [10] or
Clock-SI [11]. Indeed, as we will show in §6, the reduction of
commit timestamps, achievable via Precise Clock, does not only
increase the chances of successful speculation, but also reduces
abort rate for non-speculative protocols.

5.4 Algorithmic definition
Algorithms 1 and 2 give the pseudocode of the STR protocol.

Start transaction. Upon activation, a transaction is assigned a
read snapshot (RS) equal to the current value of the node’s phys-
ical clock. Its FFC is set to 0 and its OLCSet, i.e., the set storing
the identifiers and read timestamps of the unsafe transactions from
which the transaction reads from, to <⊥,∞> (Alg1, 1-6).

Speculative read. Read requests to locally-replicated keys are
served by local partitions. A read request to a non-local key is first
served at the cache partition to check for updates from previous
local-committed transactions. If no appropriate version is found,
the request is sent to any (remote) replica of the partition that
contains this key (Alg1, 8-12). Upon a read request for a key, a
partition updates the LastReader of the key and fetches the latest
version of the key with a timestamp no larger than the reader’s read
snapshot (Alg2, 6-7). If the fetched version is committed, or it is

6 2017/10/28

Algorithm 1: Coordinator protocol
1 startTx()
2 Tx.RS←current time()
3 Tx.Coord←self()
4 Tx.OLCSet←{⊥,∞}
5 Tx.FFC←0
6 return Tx

7 read(Tx, Key)
8 if Key is locally replicated or in cache then
9 {Value, Tw}← local partition(Key).readFrom(Tx, Key)
10 else
11 send {read,Tx,Key}to any p∈ Key.partitions()
12 wait receive {Value, Tw}
13 Tx.OLCSet.put(Tw, min value(Tw.OLCSet)}
14 Tx.FFC←max(Tx.FFC, Tw.FFC)
15 return Value when min value(Tx.OLCSet) >= Tx.FFC

16 commitTx(Tx)
// Local certification

17 LCTime←Tx.RS+1
18 for P, Keys∈ Tx.WriteSet
19 if local replica(P).prepare(Tx) = {prepared, TS}
20 LCTime←max(LCTime, TS)
21 else
22 abort(Tx)
23 if Tx updates non-local keys
24 Tx.OLCSet.put(self(), Tx.RS)
25 send local commit requests to local replicas of updated partitions

// Global certification
26 send prepare requests to remote master of updated partitions
27 wait receive {prepared, TS} from Tx.InvolvedReplicas
28 wait until all dependencies are resolved
29 CommitTime←max(all received TS)
30 commit(Tx, CommitTime)
31 return committed
32 wait receive aborted
33 abort(Tx)

34 commit(Tx, CT)
35 Tx.FFC←CT
36 Tx.OLCSet←{⊥,∞}
37 for Tr with data dependencies from Tx
38 if Tr.RS >= CT then
39 remove Tx from Tr’s read dependency
40 Tr.OLCSet.remove(Tx)
41 Tr.FFC←max(Tr.FFC, CT)
42 else
43 abort(Tr)
44 atomically commit Tx’s local committed updates

and remove Tx’s cached updates
45 send commit requests to remote replicas of updated partitions

46 abort(Tx)
47 abort transactions with dependencies from Tx
48 atomically remove Tx’s local committed updates
49 send abort requests to remote replicas of updated partitions

local-committed and the reader is reading locally, then the partition
returns the value and id of the transaction that created the value; oth-
erwise, the reader is blocked until the transaction’s final outcome
is known (Alg2, 8-14). The reader transaction updates its OLCSet
and FFC, and only reads the value if the minimum value in its
OLCSet is greater than or equal than its FFC. If not, the transaction
waits until the minimum value in its OLCSet becomes larger than
its FFC (Alg1, 13-15). This condition may never become true if the
transaction that created the fetched value conflicts with transactions
already contained in the reader’s snapshot. In that case, the reader
will be aborted after this conflict is detected and stop waiting.

Local certification. After the transaction finishes execution, its
write-set is locally certified. The local certification is essentially
a local 2PC across all local partitions that contain keys in

the transaction’s write-set, including the cache partition if the
transaction updated non-local keys (Alg1, 18-22). Each partition
prepares the transaction if no write-write is detected, and proposes
a prepare timestamp according to the Precise Clock rule (Alg2,
15-24). Upon receiving replies from all updated local partitions
(including the cache partition), the coordinator calculates the local-
commit timestamp as the maximum between the received prepare
timestamps and the transaction’s read snapshot plus one. Then, it
notifies all the updated local partitions. A notified partition converts
the pre-committed record to local-committed state with the local
commit timestamp (Alg1, 25 and Alg2, 25-29). If the transaction
updates non-local keys, the transaction is an ‘unsafe’ transaction,
so it adds its snapshot time to its OLCSet (Alg1, 23-24).

Global certification and replication. After local certification,
the keys in the transaction’s write-set that have a remote master are
sent to their corresponding master partitions for certification (Alg1,
26). As for the local certification phase, master partitions check
for conflicts, propose a prepare timestamp and pre-commit the
transaction (Alg2, 15-21). Then, a master partition replicates the
prepare request to its slave replicas and replies to the coordinator
(Alg2, 22-24). After receiving a replicated prepare request, the
slave partition aborts any conflicting local-committed transactions
and stores the prepare records. As slave replicas can be directly
read bypassing their master replica, slave replicas also track the
LastReader for keys; so, each slave also proposes a prepare
timestamp for the transaction to the coordinator (Alg2, 31-35).

Final commit/abort. A transaction coordinator can final commit
a transaction, if (i) it has received prepare replies from all replicas
of updated partitions, and (ii) all data dependencies and flow
dependencies are resolved. The commit decision, along with the
commit timestamp, is sent to to all non-local replicas of updated
partitions. T ’s FFC is updated to its own commit timestamp,
and its OLCSet is set to infinity (Alg1, 35-45). Upon abort,
the coordinator removes any local-committed updated version,
triggers the abort of any dependent transaction and sends the
decision to remote replicas (Alg1, 46-49).

5.5 Dynamically tuning speculation
Speculative reads are based on the optimistic assumption that
local-committed transactions are unlikely to experience contention
with remote transactions. Although our experiments in §6 show
that this assumption is met in well-known benchmarks such as
TPC-C and RUBiS, this is an application-dependent property. In
fact, the unrestrained use of speculation in adverse workloads can
lead to excessive misspeculation and degrade performance.

In order to enhance the performance robustness of STR, we cou-
pled it with a lightweight self-tuning mechanism that dynamically
decides whether to enable or disable the speculative mechanisms,
depending on the workload characteristics. The tuning scheme
takes a black-box approach that is agnostic of the data store imple-
mentation and also totally transparent to application developers. It
relies on a simple feedback-driven control loop, steered by a central-
ized process that gathers measurements from all nodes in a periodic

7 2017/10/28

Algorithm 2: Partition protocol
1 upon receiving {read, Tx, Key} by partition P
2 reply P.readFrom(Tx, Key)

3 upon receiving {prepare, Tx, Updates} by partition P
4 reply P.prepare(Tx, Updates)

5 readFrom(Tx, Key)
6 Key.LastReader←max(Key.LastReader, Tx.RS)
7 {Tw, State, Value}←KVStore.latest before(Key, Tx.RS)
8 if State = committed
9 return{Value, Tw}
10 else if State = local-committed and local read()
11 add data dependence from Tx to Tw
12 return{Value, Tw}
13 else
14 Tw.WaitingReaders.add(Tx)

15 prepare(Tx, Updates)
16 if exists any concurrent conflicting transaction
17 return aborted
18 else
19 PT←max(K.LastReader+1 for K∈ Updates)
20 for{K, V} ∈Updates do
21 KVStore.insert(K,{Tx, pre-committed, PT, V})
22 if P.isMaster() = true
23 send {replicate, Tx} to its replicas
24 return {prepared, PrepTime}

25 localCommit(Tx, LCT, Updates)
26 for{K, V} ∈ Updates do
27 KVStore.update(K,{Tx, local-committed, LCT, V})
28 unblock waiting preparing transactions
29 reply to waiting readers

30 upon receiving {replicate, Tx, Updates}
31 abort all conflicting pre-committed transactions

and transactions read from them
32 PT←max(K.LastReader+1 for K∈ Updates)
33 for{K, V} ∈ Updates do
34 KVStore.insert(K,{Tx, pre-committed, PT, V})
35 reply {prepared, PT}to Tx.Coord

fashion, compares the throughput achieved with speculative reads
enabled and disabled, and accordingly configures the system.

We opted for a simple and quickly converging scheme, instead
of more complex approaches (e.g., based on off-line trained
classifies or more sophisticated on-line search strategies [38]),
since our experimental findings confirm that, for a given workload,
the decision whether or not to use speculation has a straightforward
effect on throughput (no jitterlike behavior).

Our current implementation allows system administrators to
initiate the self-tuning process periodically or upon request. The
current self-tuning scheme could thus be naturally extended to
detect statistically meaningful changes of the average input load
via robust change detection algorithms, like CUSUM [7], and
react to these events by re-initiating the self-tuning mechanism.

5.6 Fault tolerance
With respect to conventional/non-speculative 2PC based trans-
actional systems, STR does not introduce additional sources of
complexity for the handling of failures. Like any other approach,
e.g., [10, 11, 33, 34], based on 2PC, some orthogonal mechanism
(typically based on replication [17]) has to be adopted to ensure
the high availability of the coordinator state.

6. Evaluation
This section presents an extensive experimental study aimed at
answering the following key questions:

1. What performance gains can be achieved by STR by allowing
transactions to speculatively read pre-committed data?

2. How does STR compare with systems, like PLANET [30],
which employ external speculation techniques and that, unlike
STR, require programmers to develop compensation logics
to deal with possible misspeculations?

3. Which workloads characteristics have the strongest impact on
the performance of STR?

4. How relevant is the Precise Clock technique, when used in con-
junction with both speculative and non-speculative protocols?

5. How effective is STR’s self-tuning mechanism to ensure robust
performance in presence of workloads that are not favourable
to speculative techniques?

Baselines. The first baseline protocol we consider is Clock-SI [11],
which we extended to support replication, as explained in §5.1. We
refer to this protocol as ClockSI-Rep. ClockSI-Rep is representa-
tive of state of the art transactional protocols based on loosely syn-
chronized physical clocks and can be seen as the base type of sys-
tems, which we extended with speculative techniques in this work.
Thus, ClockSI-Rep is an appropriate candidate to assess the perfor-
mance gains achievable by using internal speculation, as well as by
applying the Precise Clock technique to non-speculative systems.

The second baseline we consider is representative of recent
approaches [18, 20, 30] that propose programming models
aimed to support external speculation techniques, i.e., exposing
uncommitted results to clients. As discussed before, STR does
not support external speculation. Support it comes at the cost of
extra complexity on the programmers’ side, who are forced to
identify the possible concurrency anomalies that may affect their
programs and develop the corresponding compensation logics.
We build this baseline, which we call Ext-Spec, by developing
a variant of ClockSI-Rep that externalizes to client the results of a
transaction, once this passes its local certification phase and while
it is still undergoing its global certification phase.

Experimental setup. We implemented the baseline protocols and
STR in Erlang, based on Antidote [1], an open-source platform
for evaluating distributed consistency protocols. The code of the
protocols used in this study will be made freely available, in case
this submission is accepted, in order to ensure the reproducibility
of the resulted presented in the following.

Our experimental testbed is deployed across the following nine
DCs of Amazon EC2: Ireland (IE), Seoul (SU), Sydney (SY),
Oregon (OR), Singapore (SG), North California (CA), Frankfurt
(FR), Tokyo (TY) and North Virginia (VA). Each DC consists
of three m4.large instances (2 VCPU and 8 GB of memory). We
use a replication factor of six, so each partition has six replicas,
and each instance holds one master replica of a partition and
slave replicas of five other partitions. The above list of DCs also
indicates the order of replication, e.g., a master partition located
at IE has its slave replicas in SU, SY, OR, SG and CA.

8 2017/10/28

IE SU SY OR SG CA FR TY VA
Max latency (replicas) 334(SG) 267(FR) 321(FR) 160(SG) 337(IE) 167(FR) 321(SY) 212(IE) 226(SY)
Max latency (all) 334(SG) 267(FR) 321(FR) 163(SY) 337(IE) 175(SG) 324(SG) 233(FR) 226(SY)

Table 1: The first row shows the largest network latency, on average, by a DC to connect to any of its replicas; the second row shows
its largest latency to all other DCs (in msec).

0.0

0.5

1.0

1.5

C
o
m

m
it

s
(K

 t
x
s/

s)

ClockSI-Rep Ext-Spec STR

0.0
0.2
0.4
0.6
0.8

A
b
o
rt

 r
a
te

0 5 10 15 20 25 30 35 40

Number of clients per server

102

103

La
te

n
cy

 i
n
 l
o
g
(m

s)

(a) Synth-A.

0.0
0.2
0.4
0.6
0.8
1.0

C
o
m

m
it

s
(K

 t
x
s/

s)

ClockSI-Rep Ext-Spec STR

0.0
0.2
0.4
0.6
0.8

A
b
o
rt

 r
a
te

0 5 10 15 20 25 30 35 40

Number of clients per server

102

103

La
te

n
cy

 i
n
 l
o
g
(m

s)

(b) Synth-B.

Figure 3: The performance of different protocols for two synthetic
workloads, representative of a favourable (Synth-A) and an unfavourable
(Synth-B) scenario for internal speculation. In the latency plot, we use
solid lines for final latency and dashed lines for speculative latency;
in the abort rate plot, we report total abort rate with solid lines and
misspeculation rate with dashed lines.

Load is injected by spawning one thread per emulated client
in some node of the system. Each client issues transactions to a
pool of local transaction coordinators and retries a transaction if
it gets aborted. We use two metrics to evaluate latency: the final
latency of a transaction is calculated as the time elapsed since its
first activation until its final commit (including possible aborts and
retries); for Ext-Spec, we report also the speculative latency, which

Workload configurations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
liz

e
d
 t

h
ro

u
g
h
p
u
t

No SR
SR
Auto

Synth-A, 2 clients Synth-A, 40 clients Synth-B, 2 clients Synth-B, 40 clients

Figure 4: Normalized throughput with respect to the best performing
static configuration. No SR/SR denote enabling/disabling statically
speculative reads in STR; Auto denotes the use of the self-tuning
technique presented in§ 5.5.

is defined as the time since the first activation of a transaction until
its last speculative commit, i.e., the one after which it is final com-
mitted. Besides reporting abort rate, for Ext-Spec we also report the
rate of external misspeculation, i.e., the percentage of transactions
that were speculatively committed but finally aborted triggering
the activation of some compensation logic (which we do not imple-
ment in this study, for simplicity). Each reported result is obtained
from the average of at least three runs. As the standard deviations
are low, we omit reporting them in the plots to enhance readability.

Unless otherwise specified, STR uses the self-tuning mech-
anism described in §5.5 to enable and disable the use of internal
speculation. The self-tuning process gathers throughput measure-
ments with a 10 seconds frequency. The reported results for STR
refer to the final configuration identified by the self-tuning process.

6.1 Synthetic workloads
Let us start by considering a synthetic benchmark, which allows
for generating workloads with precisely identifiable and very
heterogeneous characteristics. The synthetic benchmark generates
transactions with zero “think time”, i.e., client threads issue a new
transaction as soon as the previous one is final committed.

Transaction and data access. A transaction reads and updates
10 keys. When accessing a data partition, 10% of the accesses goes
to a small set of keys in that data partition, which we call a hotspot,
and we adjust the size of the hotspot to control contention rate.
Each data partition has two million keys, of which one million are
only accessible by locally-initiated transactions and the others are
only accessible by remote transactions. This allows adjusting in an
independent way the likelihood of contention among transactions

9 2017/10/28

initiated by the same local node (local contention) and among
transactions originated at remote nodes (remote contention).

We consider two workloads, which we obtain by varying the
size of the hotspot sizes in the local and remote data partitions
in order to synthesize two extreme scenarios that can be seen as
representative of best and worst cases for internal speculation:

1. the “best case” workload, noted Synth-A, generates very high
local contention, by using a single key in the hot spots of local
partitions, but very low remote contention, by using 800 keys
in the hot spots of remote partitions. Due to high likelihood
of local contention, transactions are very likely to speculatively
read versions that were local committed by some concurrent
local transaction. Since remote contention is very low, though,
internal speculation is very likely to succeed.

2. the “worst case” workload, noted Synth-B, has both very high
local and remote contention, by using 10, resp. 3, keys in the
hot spots of local, resp. remote, partitions. Like in workload
Synth-A, transactions frequently use speculative reads, but, in
this case, internal speculation is almost certainly doomed to
fail due to the high remote contention.

Synth-A. Fig. 3.(a) clearly highlights the potential benefits that
internal speculation can provide in favourable workload conditions.
Both ClockSI-Rep and Ext-Spec fail to achieve any scalability
and thrash, due to high abort rates (see middle plot), as soon as
the degree of concurrency in the system grows to more than 2
clients. Conversely, STR scales almost linearly up to 20 clients and
throughput saturates only at around 40 clients, achieving a 11.5×
gain with respect to both baselines (which achieve very similar
throughput levels). Also, the abort rate of STR is significantly
lower than for the two baseline protocols. This is explicable
considering that, with the baselines, any transaction T that read
a key pre-committed by some concurrent transaction T ′ is forced
to block; when T ′ commits, it is very likely that T ′ generates a
commit timestamp larger the read snapshot of T , which causes
T to abort. In the same scenario, though, STR would allow T to
speculatively read from T ′; also, the commit timestamp attributed
to T ′ by Precise Clocks is likely to be smaller in absolute terms,
and, with a higher probability than for the baselines, also smaller
than the read timestamp of T . In this case, STR spares T from
aborting, as well as from blocking — this allows STR not only to
minimize the wasted work due to transactions’ rollbacks, but also
to enhance the degree of parallelism sustainable by the system.

It should be noted that since local contention dominates in this
workload, most of the aborts occur during the local certification
phase of transactions. Also, if transactions pass local certification,
they are likely to avoid conflicts with remote transactions and,
hence, commit with high probability. These considerations explain
why Ext-Spec incurs an abort rate that is very similar to the one of
ClockSI-Rep and to incur a very small external misspeculation rate.

As for the latency, the bottom plot shows about one order
magnitude smaller final latency for STR compared to the baselines
with more than 2 clients. This is due to the fact that both
ClockSI-Rep and Ext-Spec are thrashing due to high contention

Techniques
of keys

10 20 40 100

Physical 1/59% 1/60% 1/60% 1/72%
Precise 1.07/38% 1.07/38% 1.1/35% 1.41/48%

Physical SR 0.68/84% 0.57/83% 0.59/77% 0.97/75%
Precise SR 1.22/47% 1.21/44% 1.31/36% 1.59/49%

Table 2: Normalized throughput/abort rate of different techniques,
varying a transaction’s number of keys to update. Physical/Precise denotes
the use of Physical Clock/Precise Clock; SR denotes that speculative
reads are enabled. Throughputs reported in each column are normalized
according to the throughput of ‘Physical’ in that column.

in this load range. For analogous reasons, the speculative latency
of Ext-Spec is only lower than the final latency of STR at very
low load (2 clients), where the abort rate is still relatively low.

Synth-B. Fig. 3.(b) shows that, even in such an unfavourable work-
load for internal speculation, STR can provide robust performance
that is at par with the baseline protocols. Thanks to its self-tuning
capabilities, in fact, STR automatically disables the use of specula-
tive reads for 30 or more clients, which correspond to load levels in
which internal speculation has an adverse effect on performance.

This is illustrated in Fig. 4, which reports the performance
achieved by STR with or without using speculative reads, and
when using the self-tuning mechanism to select between these
two configurations. More in detail, the y-axis of this figure reports
the throughput of each variant of STR normalized with respect
to the throughput of the variant that achieves best performance
for the considered workload and number of clients (on the x-axis).

By Fig. 4, we can observe that, indeed, the use of speculative
reads reduces throughput by around 40% in workload Synth-B
with 40 clients and that the proposed self-tuning scheme can
correctly identify the optimal configuration. By this plot, we
can also observe that the choice of enabling/disabling internal
speculation is not only affected by the workload type — as
expected, speculative reads are beneficial in Synth-A but they
are not in Synth-B — but also by the level load, fixed a given
workload — speculative reads do not actually penalize throughput
in Synth-B with 2 clients. Moreover, Figure 4 shows that without
enabling speculative techniques, STR achieves similar throughput
as the non-speculative baseline. This represents an experimental
evidence supporting the efficiency of the proposed mechanism.

Benefits and overhead of Precise Clock. This experiment aims
at quantifying the benefits stemming from the use of the Precise
Clock mechanism, when used in conjunction with both speculative
and non-speculative protocols. To this end, in Table 2, we consider
four alternative systems obtained by considering ClockSI-Rep
(noted Physical) and extending it to use Precise Clocks (noted
Precise) and/or speculative reads (noted SR). In this study we
vary the transactions’ duration, and hence the corresponding abort
cost, by varying the number of keys updated by a transaction. To
maintain the contention level stable when increasing the number
of keys accessed by transactions, the key space is increased by
the same factor.

10 2017/10/28

0.0
0.5
1.0
1.5
2.0
2.5

C
o
m

m
it

s
(K

 t
x
s/

s)

ClockSI-Rep Ext-Spec STR

0.0
0.2
0.4
0.6
0.8

A
b
o
rt

 r
a
te

0 200 400 600 800 1000 1200

(a) 5% new order, 83% payment

100
101
102
103
104

La
te

n
cy

(m
s)

 i
n
 l
o
g

0 200 400 600 800 1000 1200 1400 1600

(b) 45% new order, 43% payment

0 200 400 600 800 1000 1200

(c) 5% new order, 43% payment
Number of clients per server

Figure 5: The performance of different protocols for three TPC-C workloads. In the latency plot, we use solid lines for final latency and dashed lines
for speculative latency; in the abort rate plot, we report total abort rate with solid lines and misspeculation rate with dashed lines.

Table 2 shows that Precise Clock significantly reduces abort rate
and can achieve as much as 38% of throughput gain over Physical
Clock for a non-speculative protocol. Generally, the more keys
transactions update, the larger is the abort cost and the larger the
throughput gain achieved by Precise Clock. Another interesting re-
sult is that enabling speculative reads with Physical Clock actually
has negative effects on abort rate and throughput. In fact, as we
have discussed in 5.3, physical clock based protocols, like Clock-SI
or Spanner [10, 11], tend to generate large commit timestamp,
which reduces the chances that speculative reads succeed. Finally,
the collective use of Precise Clock and speculative reads results in
the best throughput gain (59% for transactions updating 100 keys).

We also assessed the additional storage overhead introduced by
the use of Precise Clock, which, we recall, requires maintaining
additional metadata (a timestamp) for each accessed key. Our
measurement shows that for the TPC-C and RUBiS benchmarks
(§6.2), Precise Clock requires about 9% of extra storage.

6.2 Macro benchmarks
Next, we evaluate the performance of STR by implementing two
realistic benchmarks, namely TPC-C[4] and RUBiS [2]. Unlike
the previous synthetic benchmarks, TPC-C and RUBiS specify
several seconds of “think time” between consecutive operations
issued by a client. Hence, we need to use a much larger client
population to saturate the system.

TPC-C. We implemented three TPC-C transactions, namely
payment, new-order and order-status. The payment transaction
has very high local contention and low remote contention;
new-order transaction has low local contention and high remote
contention, and order-status is a read-only transaction. We consider
three workload mixes: 5% new-order, 83% payment and 12%
order-status (TPC-C A, Fig. 5.(a)); 45% new-order, 43% payment
and 12% order-status (TPC-C B, Fig. 5.(b)) and 5% new-order,
43% payment and 52% order-status (TPC-C C, Fig. 5.(c)).

Figure 5 shows that speculative reads bring significant
throughput gains, as all three workloads have high degree of local
contention. Compared with the baseline protocols (ClockSI-Rep
and Ext-Spec), STR achieves significant speedup especially for
the TPC-C A (6.13×), which has the highest degree of local con-
tention due to having large proportion of payment transaction. For
TPC-C B and TPC-C C, STR achieve 2.12× and 3× of speedup
respectively. We see that the use of external speculation in this case
barely brings any improvement on throughput over ClockSI-Rep.
We also observe that the use of external speculation can
significantly reduce the (speculative) latency perceived by clients,
but only in low load conditions. This can be explained by looking
at the abort rate plots, which clarly show that, as load increases, the
likelihood that external speculation is successful quickly decreases.

In fact, with larger number of clients (2000 to 3000), the latency
of Ext-Spec and ClockSI-Rep is on the order of 5-8 seconds, as
a consequence of the high abort rate incurred by these protocols.
Conversely, both Ext-Spec and STR still deliver a latency of a
few hundred milliseconds.

RUBiS. RUBiS [2] models an online bidding system and
encompasses 26 types of transactions, five of which are update
transactions. RUBiS is designed to run on top of a SQL database,
so we performed the following modifications to adapt it to
STR’s key-value store data model: (i) we horizontally partitioned
database tables across nodes, so that each node contains an equal
portion of data of each table; (ii) we created a local index for each
table shard, so that some insertion operations that require a unique
ID can obtain the ID locally (instead of updating a table index
shared by all shards by default). We run RUBiS’s 15% update
default workload and use its default think time (from 2 to 10
seconds for different transactions).

Also with this benchmark (see Figure 6) STR achieves remark-
able throughput gains and latency reduction. With 4000 clients
(level at which we hit the memory limit and were unable to load
more clients), STR achieves about 43% higher throughput. The

11 2017/10/28

Figure 6: The performance of different protocols for RUBiS. In the
latency plot, we use solid lines for final latency and dashed lines for
speculative latency; in the abort rate plot, we report total abort rate with
solid lines and misspeculation rate with dashed lines.

final latency gains of STR over the considered baselines extends
up to 10× latency reduction over ClockSI-Rep and Ext-Spec. Also
in this case, external speculation is effective in reducing speculative
latency only at very low load levels, before loosing effectiveness
and collapsing to the same performance of ClockSI-Rep.

7. Conclusion and future work
This paper proposes STR, an innovative protocol that exploits
speculative techniques to boost the performance of distributed
transactions in geo-replicated settings. STR is based on a novel
consistency criterion, which we call SPeculative Snapshot
Isolation (SPSI). SPSI extends the familiar SI criterion and shelters
programmers from subtle anomalies that can arise when adopting
speculative transaction processing techniques. Furthermore, using
STR requires no source-code modification, and for both of these
reasons it is fully transparent to programmers.

STR builds on recent, highly scalable transactional protocols
based on physical clocks (like Clock-SI and Google’s Spanner)
and extends them with a set of new speculative techniques (in
particular, item-based timestamps to improve the speculation)
and a self-tuning mechanism. Via an extensive experimental
study, we show that STR can achieve striking gains (up to 11×
throughput increase and 10× latency reduction) in workloads
characterized by low inter-data center contention, while ensuring
robust performance even in adverse settings.

We identify two main avenues for future research. The first
research direction opened by this work is how to adapt both the
STR protocol and its underlying speculative correctness criterion
to cope with alternative consistency semantics, like Serializability
or Strict Serializability. Another interesting research opportunity
raised by this work is related to the design and evaluation of
alternative self-tuning mechanisms, e.g., based on different model-
ing methodologies (e.g., relying on white-box analytical models),
aimed at optimizing multiple KPIs (e.g., external mispeculation and
throughput) or supporting diverse speculation degrees for different
transactions’ types or at different nodes in a heterogeneous cluster.

References
[1] Antidote. https://github.com/SyncFree/antidote.

[2] Rice University bidding system. http://rubis.ow2.org/.

[3] STR. https://github.com/marsleezm/STR.

[4] TPC benchmark-w specification v. 1.8. http://www.tpc.
org/tpc_documents_current_versions/pdf/
tpc-c_v5.11.0.pdf.

[5] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,
J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore:
Providing scalable, highly available storage for interactive services.
In CIDR, volume 11, pages 223–234, 2011.

[6] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça,
M. Najafzadeh, and M. Shapiro. Putting consistency back into
eventual consistency. In Proceedings of the Tenth European
Conference on Computer Systems, page 6. ACM, 2015.

[7] M. Basseville and I. V. Nikiforov. Detection of Abrupt Changes:
Theory and Application. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1993.

[8] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
control and recovery in database systems. 1987.

[9] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM (JACM), 43(2):225–267,
1996.

[10] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner:
Googles globally distributed database. ACM Transactions on
Computer Systems (TOCS), 31(3):8, 2013.

[11] J. Du, S. Elnikety, and W. Zwaenepoel. Clock-SI: Snapshot isolation
for partitioned data stores using loosely synchronized clocks. In
Reliable Distributed Systems (SRDS), 2013 IEEE 32nd International
Symposium on, pages 173–184. IEEE, 2013.

[12] J. Du, D. Sciascia, S. Elnikety, W. Zwaenepoel, and F. Pedone.
Clock-RSM: Low-latency inter-datacenter state machine replication
using loosely synchronized physical clocks. In Dependable Systems
and Networks (DSN), 2014 44th Annual IEEE/IFIP International
Conference on, pages 343–354. IEEE, 2014.

[13] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM (JACM), 35(2):288–323,
1988.

[14] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replication
using generalized snapshot isolation. In Reliable Distributed
Systems, 2005. SRDS 2005. 24th IEEE Symposium on, pages 73–84.
IEEE, 2005.

[15] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM
(JACM), 32(2):374–382, 1985.

[16] G. Graefe, M. Lillibridge, H. Kuno, J. Tucek, and A. Veitch.
Controlled lock violation. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pages
85–96. ACM, 2013.

[17] J. Gray and L. Lamport. Consensus on transaction commit. ACM
Transactions on Database Systems (TODS), 31(1):133–160, 2006.

[18] R. Guerraoui, M. Pavlovic, and D.-A. Seredinschi. Incremental
consistency guarantees for replicated objects. In 12th USENIX

12 2017/10/28

Symposium on Operating Systems Design and Implementation
(OSDI 16), GA, 2016. USENIX Association.

[19] J. R. Haritsa, K. Ramamritham, and R. Gupta. The prompt
real-time commit protocol. IEEE Trans. Parallel Distrib. Syst.,
11(2):160–181, Feb. 2000.

[20] P. Helland and D. Campbell. Building on quicksand. arXiv preprint
arXiv:0909.1788, 2009.

[21] R. Jiménez-Peris, M. Patiño Mart́ınez, B. Kemme, and G. Alonso.
Improving the scalability of fault-tolerant database clusters. In
Proceedings of the 22 Nd International Conference on Distributed
Computing Systems (ICDCS’02), ICDCS ’02, pages 477–,
Washington, DC, USA, 2002. IEEE Computer Society.

[22] E. P. Jones, D. J. Abadi, and S. Madden. Low overhead concurrency
control for partitioned main memory databases. In Proceedings of
the 2010 ACM SIGMOD International Conference on Management
of data, pages 603–614. ACM, 2010.

[23] R. Kotla, M. Balakrishnan, D. Terry, and M. K. Aguilera. Trans-
actions with consistency choices on geo-replicated cloud storage.
Technical report, September 2013.

[24] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. Mdcc:
Multi-data center consistency. In Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems, pages 113–126. ACM, 2013.

[25] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[26] C. Li, D. Porto, A. Clement, J. Gehrke, N. M. Preguiça, and
R. Rodrigues. Making geo-replicated systems fast as possible,
consistent when necessary. In OSDI, pages 265–278, 2012.

[27] Z. Li, P. Van Roy, and P. Romano. Speculative transaction
processing in geo-replicated data stores. Technical Report 2,
INESC-ID, Feb. 2017.

[28] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. El Abbadi.
Low-latency multi-datacenter databases using replicated commit.
Proceedings of the VLDB Endowment, 6(9):661–672, 2013.

[29] R. Palmieri, F. Quaglia, and P. Romano. Aggro: Boosting stm
replication via aggressively optimistic transaction processing. In
Network Computing and Applications (NCA), 2010 9th IEEE
International Symposium on, pages 20–27. IEEE, 2010.

[30] G. Pang, T. Kraska, M. J. Franklin, and A. Fekete. Planet: making
progress with commit processing in unpredictable environments.
In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data, pages 3–14. ACM, 2014.

[31] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling
for optimizing transaction execution in parallel oltp systems.
Proceedings of the VLDB Endowment, 5(2):85–96, 2011.

[32] S. Peluso, J. Fernandes, P. Romano, F. Quaglia, and L. Rodrigues.
Specula: Speculative replication of software transactional memory.
In SRDS, pages 91–100, 2012.

[33] S. Peluso, P. Romano, and F. Quaglia. Score: A scalable one-copy
serializable partial replication protocol. In Proceedings of the
13th International Middleware Conference, pages 456–475.
Springer-Verlag New York, Inc., 2012.

[34] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues.
When scalability meets consistency: Genuine multiversion
update-serializable partial data replication. In Distributed Computing

Systems (ICDCS), 2012 IEEE 32nd International Conference on,
pages 455–465. IEEE, 2012.

[35] K. Ren, A. Thomson, and D. J. Abadi. An evaluation of the
advantages and disadvantages of deterministic database systems.
PVLDB 7(10): 821-832, 2014.

[36] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey,
E. Rollins, M. Oancea, K. Littlefield, D. Menestrina, S. Ellner, et al.
F1: A distributed sql database that scales. Proceedings of the VLDB
Endowment, 6(11):1068–1079, 2013.

[37] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, pages 385–400.
ACM, 2011.

[38] R. S. Sutton and A. G. Barto. Introduction to Reinforcement
Learning. MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[39] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in Bayou, a
weakly connected replicated storage system, volume 29. ACM, 1995.

[40] A. Thomson and D. J. Abadi. The case for determinism in database
systems. Proceedings of the VLDB Endowment, 3(1-2):70–80, 2010.

[41] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J.
Abadi. Calvin: fast distributed transactions for partitioned database
systems. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 1–12. ACM, 2012.

[42] G. Weikum and G. Vossen. Transactional information systems:
theory, algorithms, and the practice of concurrency control and
recovery. Elsevier, 2001.

[43] P. T. Wojciechowski, T. Kobus, and M. Kokocinski. State-machine
and deferred-update replication: Analysis and comparison. IEEE
Transactions on Parallel and Distributed Systems, PP(99):1–1, 2016.

[44] C. Xie, C. Su, M. Kapritsos, Y. Wang, N. Yaghmazadeh, L. Alvisi,
and P. Mahajan. Salt: Combining acid and base in a distributed
database. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 495–509, 2014.

13 2017/10/28

	Executive summary
	Results
	Making AntidoteDB ready for edge computing
	Overview of AntidoteDB
	Client-side caching
	Non-uniform Replication
	Access control for weakly-consistent data stores
	Antidote Query Language

	Correctness and verification of heavy edge applications
	Repliss
	Correct Eventual Consistency tool (CEC)

	Further work on data storages for heavy-edge systems
	Blotter: Geo-replication with strong consistency
	Tradeoffs in reducing read latencies
	Transparent speculation in partially replicated transactional stores
	Multimodal Indexable Encryption for Mobile Cloud-based Applications
	Consistency Upgrades for Online Services

	Relation to use cases
	Monitoring Guifi.net community network
	Building a weakly-consistent datastore index
	A file system on AntidoteDB

	Papers and publications
	Software
	Publications

