
The programming
continuum —

Centre to edge
The Continuum Collaboration

Nova
Erlang Solutions Limited

INESC
Mainflux Tech

Scality
Sorbonne-Université

TU Kaiserslautern
Université catholique de Louvain

Universidad Politècnica de Catalunya

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Far edge

X

Fast reads
Replicate updates

consistent ∩ available = ∅

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Centre vs edge

Data centre
• Resource-rich, high bandwidth
• Stable, low churn
• Consensus, strong consistency
• Far away, poor availability

Edge
• Local data, short response time
• Autonomy, availability, privacy
• Edge-edge collaboration
• High churn, weak consistency

2 [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Programming distributed
systems

Lots of issues / silos
• Business logic of a service
• Composing services
• Sharing data
• Reacting to events
• Security
• Deployment, placement, monitoring
• etc.

X

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Communication models
Memory-oriented:

• Read/write from/to database
• Global, flat; wide interface
• Consistency model
• Active process, passive data
• Structured data, unstructured processes
• Dominant in centre

Event-oriented, reactive:
• Structured message-passing graph
• Actor responds to events
• Data local, narrow interface
• Shared-nothing actors (no consistency issues?)
• Dominant at edge

3 [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Edge computing has
a data problem

Edge-centric: latency, autonomy, availability
• Will grow (conjecture)

Scenarios:
• Collaborations
• Games
• Distributed Learning
• Vehicles

Cloud-mediated
• Aggregation, bandwidth
• “Stateless” services

4

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Previous work, such as CRDTs [125], TCC [7] and
Proteus [138] show the direction for a unification.
Abstractly, the system can be modelled as a partial
order of states or of update events. Processes can ex-
change events or messages, which may contain
references to state. At any point in time, the state of the
database observed by a process is causally consistent
with the set of events that it received. This model can
be seen as equally event- and memory-centric,
provides a familiar consistency guarantee, remains
asynchronous and does not reduce availability.

X [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Diverse memory models

Tension: deterministic vs. available
Models:

• Single sequence of versions
• Multiple version, per process + convergence
• Not monotonic: Branching/Rollback + stable prefix

Replication:
• Core: full replication + ops
• Edge: partial replication + state

X

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Why?

No profound reason for proliferation of incompatible
models.

Full-featured computers at the edge
Simplify from different perspectives

X [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Wanted: common model

Unified communication model
• Shared data + events
• Uniform semantics, guarantees
• Available first + strongest possible guarantees
‣ As concurrent as possible w.r.t. semantics

• Security
Full power of distributed programming

• Abstract, don't hide
• Developer can optimise
• App logic level + operations level

5

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Unifying the data model

CRDTs
• synchronisation-free
• high availability, local access

Key: a base data/consistency model
• Consistent snapshot, data + events
• CRDTs + TCC + optional stronger
• multi-value concurrency control MVCC

X [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Unifying data & events (1)

Communication stream =
• Updates, events
• States
• Metadata
‣ system: VC, transaction, etc.
‣ arbitrary: debugging, flows, etc.

Local state
• CRDTs, Versioned
• = previous state + updates received
• = set of updates that led to this snapshot

X

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Sweet spot: TCC

Transactional Causal Consistency
• u ⟶ v ∧ v visible ⟹ u visible
• same_bundle (u, v) ∧ v visible ⟹ u visible
• All events that contributed to current state are visible
• All states that contributed to current event are visible

Seamlessly strengthen CC
• SSER = CC + total-ordered snapshots
• Intermediate: some snapshots mutually ordered
• When required by application semantics

6 [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Possible API
commit_ts ≔

txn (available(), locks, attributes) {
ref counter x ≔ db (key_x)
pre x ≥ 0
x.inc (10)
ref set y ≔ db (key_y)
y.add ("foobar")
}

subscribe (x, my_callback)
my_callback () returns (ref, new_ts)

// not value

Logical time: 1st-class, ≦
7

Non-failing • Consistency
• Centre or edge
• etc.

Most recent
available snapshot

⟹ no wait
snapshot

before-or-
concurrent
≣ ¬after

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Transparent metadata

Attach metadata to information
• CC
• provenance
• flow analysis
• semantic tags
• etc

Not inflate message size ⟹ metadata store

X [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Other highlights

CRDTs
Data invariants
⟹ weaker, stronger consistency as required

Availability-compatible access control
End-to-end encryption
Programmer-defined distributed abstractions
Composable abstractions
Integrate SysOps

8

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Confidentiality

CRDTs: merge in user device
• End-to-end encryption
• Cloud for storage, communication
• Data not exposed
• But operations, concurrency exposed

P2P encryption in dynamic groups
• See Snapdoc [Kleppmann 2019]

X [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Security & isolation
⟶ data model

Security without strong consistency?
Don't send to replica not allowed to read

⟹ partial replication
Refuse updates from replica not allowed to write

• visible(u) ⟹ legal(u)
• u ⟶ v ∧ ¬legal(u) ⟹ ¬legal(v)

Data model:
• Branching histories: fork consistency
• Non-monotonic views, rollbacks, fragmented store?

X

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

AccGreGate security model

AccGreGate: access control for weak consistency
• No point in hiding already-visible versions; access

right change applies to future versions
• Associate security metadata to data
• Check metadata on/after access
• Concurrent changes: most restrictive wins

Conjecture (TBC):
• AccGreGate + TCC ⟹ monotonic, no rollback

X [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Securing CC

Forging VCs, manipulate history
Solutions?

X

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Composability

composition of parts
Ex: security layer, metadata layer
Composability is key
The designer should be able to create and reason about

distributed abstractions.
Modular, Composable verification techniques

X [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Applications are often developed under the hidden
assumption of strong consistency. (AP) must accept
concurrent updates,. Alternatives exist, which depend
on the application invariants [127]. Some can be
maintained purely at the application level; some need
multiple operations to execute transactionally; some
require the system to order reads; others, to order
writes. To address this challenge, we will develop a
library of concurrency control protocol abstractions, as
well as language-level logics (supported by static and
dynamic verification tools), in order to generate the
most efficient correct protocol that ensures the
application remains correct in an imperfect
environment.

X

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Objectives. The overarching goal of this package is to
develop tools and techniques that help programmers
building correct and efficient multicloud applications.
These multicloud applic- ations use replicated data in
the cloud and edge, and have to address issues as
message latency, failures, and concurrency. These
difficulties are magnified because nowadays
applications, instead of being built as a monolithic
entities, they are structured as a set of autonomous
and independ- ent services. Ensuring data consistency
between these loosely-coupled services raises new
and difficult challenges: related data is scattered
across services; the storage system of each service
might have a different consistency model; operations

X [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

SysOps

Computation, data access and events consistently,
wherever located

Deployment, elasticity, placement and location
• Important
• Orthogonal to business logic
• Programmed with the same abstractions as

functional program text
Need principled methods and tools for supervising and

operating geo-distributed and edge systems

X

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Cloud-to-Edge system operations, deployment and
control. This challenge is to automate de- ployment
and control (including placement of data and
computation) of highly-dynamic, evolving cloud-edge
systems. Users will set service-level objectives (SLOs).
SLO metrics are often in ten- sion and require trade-
offs; they may include, for instance, energy
consumption, response times, atomicity vs. freshness
of data, security constraints vs. bandwidth, and
monetary cost. We need to support deployment,
placement, monitoring, and run-time analysis of large,
dynamic systems, and to support seamless evolution
of sub-systems and of interfaces between them.

X [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Placement and Migration Although the APIs and
semantics are uniform across the whole core- to-far-
edge spectrum, the operational costs are different
depending on location. Therefore, data and
computations should be placed intelligently (possibly
requiring transformations), mostly in an automatic
fashion (i.e., minimal to no human interaction) and
proactively ad- apting to variations in workloads,
resource availability, key performance indicators of ap-
plications, etc. Such dynamic placement must respect
consistency, correctness, and security requirements,
which is a non-trivial set of restrictions to be addressed
at large scale. Further- more, centralized solutions
must be avoided, as to enable fast adaptation and

X

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Single semantics, multiple
implementations

The above can be implemented in many
different (but mutually compatible) ways, for
instance in the core vs. at the far edge.

For instance, we leverage data centres for
ensuring consistent communication and
backup, and for high-bandwidth computation

Place data/computation where most appropriate

9 [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Simplified distributed
programming?

MapReduce, TensorFlow, Flink
• Very restricted programming model
• Automate deployment, elasticity, etc.
• Well suited to a specific problem area

Orleans:
• Generic programming at app level
• Configuration level: deployment, elasticity for

dummies
Ansible, Puppet, Salt, Kubernetes...

• Orchestration, configuration level only
Control = second-class?
Placement is essential for performance

X

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Open universe?

Garbage collection:
• Stable property w.r.t. CC w/o rollbacks
• Global property (requires closed group?)

Causal consistency
• Vector clock:
‣ O (|universe|)

• Stable Causal Snapshot (can forget anything prior)
‣ O (|universe|2)

X [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Continuum proposal

Programming continuum: core cloud to far edge
• Semantics independent of location
• Processes communicate and share data

consistently
• Availability first: local data
• Consistent security model

Methods and tools for application correctness
Principled Systems Operations

• Orchestration, Elasticity, Placement

10

[The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Continuum

Need mutually-consistent events and state
• Don't tack one on top of the other!

Causal consistency
• Compatible with availability under partition,
• Snapshots: mutual consistency

Strengthen to total-order when required by app
semantics

11 [The programming continuum, from core to edge] [Dagstuhl PL for Dist. Sys. 2019-10-28]

Creative Commons
Attribution-ShareAlike 4.0

Intl. License

You are free to:
• Share — copy and redistribute the material in any medium or

format
• Adapt — remix, transform, and build upon the material

for any purpose, even commercially, under the following terms:

 Attribution — You must give appropriate credit, provide a link to
the license, and indicate if changes were made. You may do so
in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

 ShareAlike — If you remix, transform, or build upon the material,
you must distribute your contributions under the same license as
the original.

12

